We report a combined experimental and computational study of a low constraint aluminum single crystal fracture geometry and investigate the near-tip stress and strain fields. To this end, a single edge notched tensile (SENT) specimen is considered. A notch, with a radius of 50μm, is taken to lie in the (010) plane and its front is aligned along the [101] direction. Experiments are conducted by subjecting the specimen to tensile loading using a special fixture inside a scanning electron microscope chamber. Both SEM micrographs and electron back-scattered diffraction (EBSD) maps are obtained from the near-tip region. The experiments are complemented by performing 3D and 2D plane strain finite element simulations within a continuum crystal plasticity framework assuming an isotropic hardening response characterized by the Pierce–Asaro–Needleman model. The simulations show a distinct slip band forming at about 55deg with respect to the notch line corresponding to slip on (11¯1)[011] system, which corroborates well with experimental data. Furthermore, two kink bands occur at about 45deg and 90deg with respect to the notch line within which large rotations in the crystal orientation take place. These predictions are in good agreement with the EBSD observations. Finally, the near-tip angular variations of the 3D stress and plastic strain fields in the low constraint SENT fracture geometry are examined in detail.

1.
Rice
,
J. R.
, 1987, “
Tensile Crack Tip Fields in Elastic-Ideally Plastic Crystals
,”
Mech. Mater.
0167-6636,
6
, pp.
317
335
.
2.
Saeedvafa
,
M.
, and
Rice
,
J. R.
, 1989, “
Crach Tip Singular Fields in Ductile Single Crystals With Taylor Power-Law Hardening. II: Plain Strain
,”
J. Mech. Phys. Solids
0022-5096,
37
, pp.
673
691
.
3.
Cuitino
,
A. M.
, and
Ortiz
,
M.
, 1996, “
Three-Dimensional Crack-Tip Fields in Four Point Bending Copper Single Crystal Specimens
,”
J. Mech. Phys. Solids
0022-5096,
44
, pp.
863
904
.
4.
Drugan
,
W. J.
, 2001, “
Asymptotic Solutions for Tensile Crack Tip Fields Without Kink-Type Shearbands in Elastic-Ideally Plastic Single Crystals
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
2155
2176
.
5.
Rice
,
J. R.
,
Hawk
,
D.
, and
Asaro
,
R. J.
, 1990, “
Crack Tip Fields in Ductile Single Crystals
,”
Int. J. Fract.
0376-9429,
42
, pp.
301
321
.
6.
Mohan
,
R.
,
Ortiz
,
M.
, and
Shih
,
C. F.
, 1992, “
An Analysis of Cracks in Ductile Single Crystals: Part II-Mode-I Loading
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
315
337
.
7.
Cuitino
,
A. M.
, and
Ortiz
,
M.
, 1992, “
Computational Modeling of Single Crystals
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
1
, pp.
225
263
.
8.
Flouriot
,
S.
,
Forest
,
S.
,
Cailletaud
,
G.
,
Koster
,
A.
,
Remy
,
L.
,
Burgardt
,
B.
,
Gros
,
V.
,
Mosset
,
S.
, and
Delautre
,
J.
, 2003, “
Strain Localization at the Crack Tip in Single Crystal CT Specimens Under Monotonous Loading: 3D Finite Element Analysis and Application to Nickel-Based Superalloys
,”
Int. J. Fract.
0376-9429,
124
, pp.
43
77
.
9.
Shield
,
T. W.
, and
Kim
,
K. S.
, 1994, “
Experimental Measurement of the Near Tip Strain Field in an Iron-Silicon Single Crystal
,”
J. Mech. Phys. Solids
0022-5096,
42
, pp.
845
873
.
10.
Shield
,
T. W.
, 1996, “
Experimental Study of the Plastic Strain Fields Near a Notch Tip in a Copper Single Crystal During Loading
,”
Acta Mater.
1359-6454,
44
, pp.
1547
1561
.
11.
Crone
,
W. C.
, and
Shield
,
T. W.
, 2001, “
Experimental Study of the Deformation Near a Notch Tip in Copper and Copper-Beryllium Single Crystals
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
2819
2838
.
12.
Kysar
,
J.
, and
Briant
,
C.
, 2002, “
Crack Tip Deformation Fields in Ductile Single Crystals
,”
Acta Mater.
1359-6454,
50
(
9
), pp.
1367
2380
.
13.
Patil
,
S. D.
,
Narasimhan
,
R.
, and
Mishra
,
R. K.
, 2008, “
A Numerical Study of Crack Tip Constraint in Ductile Single Crystals
,”
J. Mech. Phys. Solids
0022-5096, accepted.
14.
O’Dowd
,
N. P.
, and
Shih
,
C. F.
, 1991, “
Family of Crack Tip Fields Characterized by a Triaxiality Parameter-I, Structure of Fields
,”
J. Mech. Phys. Solids
0022-5096,
39
, pp.
989
1015
.
15.
Asaro
,
R. J.
, 1983, “
Crystal Plasticity
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
921
934
.
16.
Miehe
,
C.
, and
Schotte
,
J.
, 2004, “
Crystal Plasticity and Evolution of Polycrystalline Microstructure
,”
Encyclopedia of Computational Mechanics (Solids and Structures)
,
S.
Erwin
,
D. B.
Rene
, and
J. R.
Hughes
, eds.,
Wiley
,
New York
, Vol.
2
Chap
8
, pp.
51
83
.
17.
Peirce
,
D.
,
Asaro
,
R. J.
, and
Needleman
,
A.
, 1983, “
Material Rate Dependence and Localized Deformation in Crystalline Solids
,”
Acta Metall.
0001-6160,
31
, pp.
1951
1976
.
18.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 1989,
The Finite Element Method
,
McGraw-Hill
,
New York
.
19.
Moran
,
B.
,
Ortiz
,
M.
, and
Shih
,
C. F.
, 1990, “
Formulation of Implicit Finite Element Methods for Multiplicative Finite Deformation Plasticity
,”
Int. J. Numer. Methods Eng.
0029-5981,
29
, pp.
483
514
.
20.
Hosford
,
W. F. J.
,
Fleischer
,
R. L.
, and
Backofen
,
W. A.
, 1960, “
Tensile Deformation of Aluminum Single Crystals at Low Temperatures
,”
Acta Metall.
0001-6160,
8
, pp.
187
199
.
21.
Narasimhan
,
R.
, and
Rosakis
,
A. J.
, 1990, “
Three-Dimensional Effects Near a Crack-Tip in Ductile TPB Specimen: Part I—A Numerical Investigation
,”
ASME J. Appl. Mech.
0021-8936,
57
, pp.
607
617
.
22.
Asaro
,
R. J.
, 1983, “
Micromechanics of Crystals and Polycrystals
,”
Adv. Appl. Mech.
0065-2156,
23
, pp.
1
115
.
23.
Morawiec
,
A.
, 2004,
Orientation and Rotation: Computations in Crystallographic Textures
,
Springer
,
Berlin
.
24.
Subramanya
,
H. Y.
,
Vishwanath
,
S.
, and
Narasimhan
,
R.
, 2005, “
A Three Dimensional Study of Mixed Mode (I and II) Crack Tip Fields in Elastic-Plastic Solids
,”
Int. J. Fract.
0376-9429,
136
, pp.
167
185
.
25.
Betegon
,
C.
, and
Hancock
,
J. W.
, 1991, “
Two-Parameter Characterization of Elastic-Plastic Crack Tip Fields
,”
ASME J. Appl. Mech.
0021-8936,
58
, pp.
104
110
.
You do not currently have access to this content.