Large displacement micro-indentation tests have been performed on various polymeric solids to measure the plastic properties. Cylindrical flat-ended indenters with diameter in the range of 1090μm are mostly used. The mechanism of large-strain indentation has been examined with optical microscopy and finite element simulations. Results show that under a flat-tipped indenter, the material can quickly reach a fully plastic state. The size (diameter) of the plastic zone is constant in large-strain regions and unaffected by the exact tip profile (flat, spherical, and conical). The indentation stress-displacement curve at large strains is linear as a result of the steady-state plastic flow, from which the mean indentation pressure, a measure of yield strength, can be readily extrapolated. The indentation stress-displacement response is independent of the indenter diameters but strongly dependent on the strain-hardening behavior of the material and the friction between a material and an indenter. Compared with other shaped indenters, the flat-ended indenter requires the least penetration depth in order to probe the plastic properties of a material or structure.

1.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 1992, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
0884-2914,
7
, pp.
1564
1583
.
2.
Oliver
,
W. C.
,
Hutchings
,
R.
, and
Pethica
,
J. B.
, 1986,
Microindentation Techniques in Materials Science and Engineering
,
B. J.
Blau
and
B. R.
Lawn
, eds.,
ASTM
,
Philadelphia
, ASTM 889 47.
3.
Pharr
,
G. M.
,
Harding
,
D. S.
, and
Oliver
,
W. C.
, 1993, “
Measurement of Fracture Toughness in Thin Films and Small Volumes Using Nanoindentation Methods
,”
Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures
,
M.
Nastasi
,
D. M.
Parkin
, and
H.
Gleiter
, eds.,
Kluwer Academic
, pp.
449
461
.
4.
Pharr
,
G. M.
,
Oliver
,
W. C.
, and
Brotzen
,
F. R.
, 1992, “
On The Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation
,”
J. Mater. Res.
0884-2914,
7
, pp.
613
617
.
5.
Doerner
,
M. F.
, and
Nix
,
W. D.
, 1986, “
A Method for Interpreting the Data From Depth-Sensing Indentation Instruments
,”
J. Mater. Res.
0884-2914,
1
, pp.
601
609
.
6.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 2004, “
Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology
,”
J. Mater. Res.
0884-2914,
19
, pp.
3
20
.
7.
Pethicai
,
J. B.
,
Hutchings
,
R.
, and
Oliver
,
W. C.
, 1983, “
Hardness Measurements at Penetration Depths as Small as 20 nm
,”
Philos. Mag. A
0141-8610,
48
, pp.
593
606
.
8.
Sneddon
,
I. N.
, 1965, “
The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile
,”
Int. J. Eng. Sci.
0020-7225,
3
, pp.
47
57
.
9.
Mouginot
,
R.
, and
Maugis
,
D.
, 1985, “
Fracture Indentation Beneath Flat and Spherical Punches
,”
J. Mater. Sci.
0022-2461,
20
, pp.
4354
.
10.
Swain
,
M. V.
, 1998, “
Mechanical Property Characterisation of Small Volumes of Brittle Materials With Spherical Tipped Indenters
,”
Mater. Sci. Eng., A
0921-5093,
253
, pp.
160
166
.
11.
Swadener
,
J. G.
,
Taljat
,
B.
, and
Pharr
,
G. M.
, 2001, “
Measurement of Residual Stress by Load and Depth Sensing Indentation With Spherical Indenters
,”
J. Mater. Res.
0884-2914,
16
, pp.
2091
2102
.
12.
Anton
,
R. J.
,
Miskiohlu
,
I.
, and
Subhash
,
G.
, 1999, “
Determination of Residual Stress Fields Beneath a Vickers Indentation Using Photoelasticity
,”
Exp. Mech.
0014-4851,
39
, pp.
227
230
.
13.
Park
,
Y. J.
, and
Pharr
,
G. M.
, 2004, “
Nanoindentation With Spherical Indenters: Finite Element Studies of Deformation in the Elastic-Plastic Transition Regime
,”
Thin Solid Films
0040-6090,
447–448
, pp.
246
250
.
14.
Herbert
,
E. G.
,
Pharr
,
G. M.
,
Oliver
,
W. C.
,
Lucas
,
B. N.
, and
Hay
,
J. L.
, 2001, “
On the Measurement of Stress-Strain Curves by Spherical Indentation
,”
Thin Solid Films
0040-6090,
398–399
, pp.
331
335
.
15.
Johnson
,
K. L.
, 1994,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
16.
Chu
,
S. N. G.
, and
Li
,
J. C. M.
, 1977, “
Impression Creep: A New Creep Test
,”
J. Mater. Sci.
0022-2461,
12
, pp.
2200
2208
.
17.
Li
,
J. C. M.
, 2002, “
Impression Creep and Other Localized Tests
,”
Mater. Sci. Eng., A
0921-5093,
322
(
1–2
), pp.
23
42
.
18.
Wright
,
S. C.
,
Huang
,
Y.
, and
Fleck
,
N. A.
, 1992, “
Deep Penetration of Polycarbonate by a Cylindrical Punch
,”
Mech. Mater.
0167-6636,
13
, pp.
277
284
.
19.
Lu
,
Y.
, and
Shinozaki
,
D. M.
, 1998, “
Deep Penetration Micro-Indentation Testing of High Density Polyethylene
,”
Mater. Sci. Eng., A
,
249
, pp.
134
144
. 0921-5093
20.
Lu
,
Y.
, and
Shinozaki
,
D. M.
, 2005, “
Substrate Constraint on Micro-Indentation Testing of Polymer Coatings
,”
Mater. Sci. Eng., A
,
396
, pp.
77
86
. 0921-5093
21.
Lo
,
J. C. W.
,
Lu
,
Y.
, and
Shinozaki
,
D. M.
, 2005, “
Kink Band Formation During Microindentation of Oriented Polyethylene
,”
Mater. Sci. Eng., A
,
396
(
15
), pp.
77
86
. 0921-5093
22.
Gao
,
X. L.
,
Jing
,
X. N.
, and
Subhash
,
G.
, 2006, “
Two New Expanding Cavity Models for Indentation Deformation of Elastic Strain-Hardening Materials
,”
Int. J. Solids Struct.
,
43
, pp.
2193
2208
. 0020-7683
23.
Feng
,
G.
,
Qu
,
S.
,
Huang
,
Y.
, and
Nix
,
W. D.
, 2007, “
An Analytical Expression for the Stress Field Around an Elastoplastic Indentation/Contact
,”
Acta Mater.
,
55
, pp.
2929
2938
. 1359-6454
24.
Hill
,
R.
, 1950,
The Mathematical Theory of Plasticity
,
Oxford University Press
,
Clarendon, Oxford
.
25.
ABAQUS
, 2006,
ABAQUS Users’ Manual
,
Hibbit, Karlson and Sorenson
,
Pawtucket, RI
.
26.
Mesarovic
,
S. D.
and
Fleck
,
N. A.
, 1987, “
Spherical Indentation of Elastic-Plastic Solids
,”
Proc. R. Soc. London
,
455
, pp.
2707
2728
. 0370-1662
27.
Liu
,
W. K.
,
Chen
,
J. S.
,
Belytschko
,
T.
and
Zhang
,
Y. F.
, 1991, “
Adaptive ALE Finite Elements With Particular Reference to External Work Rate on Frictional Interface
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
93
(
2
), pp.
189
216
.
28.
Voyiadjis
,
G. Z.
and
Foroozesh
,
M.
, 1991, “
A Finite Strain, Total Lagrangian Finite Element Solution for Metal Extrusion Problems
,”
Comput. Methods Appl. Mech. Eng.
,
86
(
3
), pp.
337
370
. 0885-0046
29.
Perić
,
D.
,
Vaz
,
M.
, and
Owen
,
D. R. J.
, 1999, “
On Adaptive Strategies for Large Deformations of Elasto-Plastic Solids at Finite Strains: Computational Issues and Industrial Applications
,”
Comput. Methods Appl. Mech. Eng.
,
176
(
1–4
), pp.
279
312
. 0885-0046
30.
Coupez
,
T.
, and
Chenot
,
J. T.
, 1992, “
Large Deformations and Automatic Remeshing
,”
Computational Plasticity (COMPLASIII)
,
E.
Hinton
,
D. J. R.
Owen
, and
E.
Onate
, eds.,
Pineridge
,
Swansea
, pp.
1077
1088
.
You do not currently have access to this content.