Abstract

A combined experimental and analytical approach is undertaken to identify the relationship between process parameters and fracture behavior in the cutting of a 1mm thick alumina samples by a hybrid CO2 laser∕waterjet (LWJ) manufacturing process. In LWJ machining, a 200W power laser was used for local heating followed by waterjet quenching of the sample surface leading to thermal shock fracture in the heated zone. Experimental results indicate three characteristic fracture responses: scribing, controlled separation, and uncontrolled fracture. A Green’s function based approach is used to develop an analytical solution for temperatures and stress fields generated in the workpiece during laser heating and subsequent waterjet quenching along the machining path. Temperature distribution was experimentally measured using thermocouples and compared with analytical predictions in order to validate the model assumptions. Computed thermal stress fields are utilized to determine the stress intensity factor and energy release rate for different configurations of cracks that caused scribing or separation of the workpiece. Calculated crack driving forces are compared with fracture toughness and critical energy release rates to predict the equilibrium crack length for scribed samples and the process parameters associated with transition from scribing to separation. Both of these predictions are in good agreement with experimental observations. An empirical parameter is developed to identify the transition from controlled separation to uncontrolled cracking because the equilibrium crack length based analysis is unable to predict this transition. Finally, the analytical model and empirical parameter are utilized to create a map that relates the process parameters to the fracture behavior of alumina samples.

1.
Hashish
,
M.
, 1984, “
Cutting With Abrasive Waterjets
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
106
, pp.
60
69
.
2.
Gudimetla
,
P.
,
Wang
,
J.
, and
Wong
,
W.
, 2002, “
Kerf Formation Analysis in the Abrasive Waterjet Cutting of Industrial Ceramics
,”
J. Mater. Process. Technol.
0924-0136,
128
, pp.
123
129
.
3.
Schroede
,
Dh.
, and
English
,
F. L.
, 1972, “
Comparison of Strength of Alumina Substrates for Different Separation Techniques
,”
IEEE Transactions on Parts Hybrids and Packaging
,
PHP8
, pp.
4
6
.
4.
Huang
,
H.
, and
Liu
,
Y. C.
, 2003, “
Experimental Investigations of Machining Characteristics and Removal Mechanisms of Advanced Ceramics in High Speed Deep Grinding
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
, pp.
811
823
.
5.
Kalyanasundaram
,
D.
,
Shehata
,
G.
,
Neumann
,
C.
,
Shrotriya
,
P.
, and
Molian
,
P.
, 2008, “
Design and Validation of a Hybrid Laser∕Water-Jet Machining System for Brittle Materials
,”
J. Laser Appl.
1042-346X,
20
, pp.
127
134
.
6.
Hong
,
L.
, and
Li
,
L. J.
, 1999, “
A Study of Laser Cutting Engineering Ceramics
,”
Opt. Laser Technol.
0030-3992,
31
, pp.
531
538
.
7.
Shehata
,
G.
,
Molian
,
P. A.
,
Bastawros
,
A.
, and
Shrotriya
,
P.
, 2007, “
Surface Finish and Flexural Strength of CO2 Laser-Cut Alumina by Evaporative and Thermal Stress Fracture Modes
,”
Trans. North Am. Manuf. Res. Inst. SME
1047-3025,
35
, pp.
391
400
.
8.
Kalyana-Sundaram
,
D.
,
Wille
,
J.
,
Shrotriya
,
P.
, and
Molian
,
P.
, 2008, “
CO2 Laser∕Waterjet Machining of Polycrystalline Cubic Boron Nitride
,”
Trans. North Am. Manuf. Res. Inst. SME
1047-3025,
36
, pp.
517
524
.
9.
Lumley
,
R. M.
, 1969, “
Controlled Separation of Brittle Materials Using a Laser
,”
Am. Ceram. Soc. Bull.
0002-7812,
48
, pp.
850
854
.
10.
Tsai
,
C. H.
, and
Liou
,
C. S.
, 2003, “
Fracture Mechanism of Laser Cutting With Controlled Fracture
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
519
528
.
11.
Tsai
,
C. H.
, and
Chen
,
C. J.
, 2003, “
Formation of the Breaking Surface of Alumina in Laser Cutting With a Controlled Fracture Technique
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
217
, pp.
489
497
.
12.
Segall
,
A. E.
,
Cai
,
G.
,
Akarapu
,
R.
,
Romasco
,
A.
, and
Li
,
B. Q.
, 2005, “
Fracture Control of Unsupported Ceramics During Laser Machining Using a Simultaneous Prescore
,”
J. Laser Appl.
1042-346X,
17
, pp.
57
62
.
13.
Li
,
K.
, and
Sheng
,
P.
, 1995, “
Plane-Stress Model for Fracture of Ceramics During Laser Cutting
,”
Int. J. Mach. Tools Manuf.
0890-6955,
35
, pp.
1493
1506
.
14.
Barnes
,
C.
,
Shrotriya
,
P.
, and
Molian
,
P.
, 2007, “
Water-Assisted Laser Thermal Shock Machining of Alumina
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
, pp.
1864
1874
.
15.
Akapura
,
R.
,
Li
,
B.
, and
Segall
,
A. E.
, 2004, “
A Thermal Stress Failure Model for Laser Cutting and Forming Operations
,”
Journal of Failure Analysis and Prevention
,
4
, pp.
51
62
.
16.
Lu
,
T. J.
, and
Fleck
,
N. A.
, 1998, “
The Thermal Shock Resistance of Solids
,”
Acta Mater.
1359-6454,
46
, pp.
4755
4768
.
17.
Zhao
,
L. G.
,
Lu
,
T. J.
, and
Fleck
,
N. A.
, 2000, “
Crack Channelling and Spalling in a Plate Due to Thermal Shock Loading
,”
J. Mech. Phys. Solids
0022-5096,
48
, pp.
867
897
.
18.
Olagnon
,
C.
,
Chevalier
,
J.
, and
Pauchard
,
V.
, 2006, “
Global Description of Crack Propagation in Ceramics
,”
J. Eur. Ceram. Soc.
0955-2219,
26
, pp.
3051
3059
.
19.
Elperin
,
T.
,
Kornilov
,
A.
, and
Rudin
,
G.
, 2000, “
Formation of Surface Microcrack for Separation of Nonmetallic Wafers Into Chips
,”
ASME J. Electron. Packag.
1043-7398,
122
, pp.
317
322
.
20.
Boley
,
B. A.
, and
Weiner
,
J. H.
, 1997,
Theory of Thermal Stresses
,
Dover
,
Mineola, NY
.
21.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
, 1985,
Stress Analysis of Cracks Handbook
,
Del Research
,
St. Louis, MI
.
22.
Khelkhal
,
M.
, and
Herlemont
,
F.
, 1992, “
Determination of Effective Optical-Constants of Infrared CO2 Wave-Guide Laser Materials
,”
Appl. Opt.
0003-6935,
31
, pp.
4175
4181
.
23.
Moorhouse
,
C. J.
,
Villarreal
,
F.
,
Wendland
,
J. J.
,
Baker
,
H. J.
,
Hall
,
D. R.
, and
Hand
,
D. P.
, 2005, “
CO2 Laser Processing of Alumina (Al2O3) Printed Circuit Board Substrates
,”
IEEE Trans. Electron. Packag. Manuf.
1521-334X,
28
, pp.
249
258
.
24.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1996,
Introduction to Heat Transfer
, 3rd ed.,
Wiley
,
New York
.
25.
Ashby
,
M. F.
, 2001,
Materials Selection in Mechanical Design
,
Butterworth-Heinemann
,
Oxford, England
.
26.
Yang
,
B.
and
Ravi-Chandar
,
K.
, 2001, “
Crack Path Instabilities in a Quenched Glass Plate
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
91
130
.
27.
Steen
,
W.
, 2003,
Laser Materials Processing
, 3rd ed.,
Springer
,
New York
.
You do not currently have access to this content.