In this article we review recent advances in experimental techniques for the mechanical characterization of materials and structures at various length scales with an emphasis in the submicron- and nanoregime. Advantages and disadvantages of various approaches are discussed to highlight the need for carefully designed experiments and rigorous analysis of experimentally obtained data to yield unambiguous findings. By examining in depth a few case studies we demonstrate that the development of robust and innovative experimentation is crucial for the advancement of theoretical frameworks, assessment of model predictive capabilities, and discovery of new physical phenomena.
Issue Section:
Predictive Science and Technology in Mechanics and Materials
Keywords:
carbon nanotubes,
design of experiments,
elasticity,
micromechanical devices,
microswitches,
nanowires,
plasticity,
thin films
Topics:
Atomic force microscopy,
Carbon nanotubes,
Dislocations,
Displacement,
Elasticity,
Nanostructures ,
Nanowires,
Plasticity,
Stress,
Thin films,
Young's modulus,
Deformation,
Nanotubes,
Crystals,
Simulation,
Nanoscale phenomena,
Deflection,
Nanoindentation,
Columns (Structural),
Testing,
Resonance,
Fracture (Materials),
Fracture (Process)
1.
Park
, H. S.
, Gall
, K.
, and Zimmerman
, J. A.
, 2005, “Shape Memory and Pseudoelasticity in Metal Nanowires
,” Phys. Rev. Lett.
0031-9007, 95
(25
), p. 255504
.2.
Diao
, J. K.
, Gall
, K.
, and Dunn
, M. L.
, 2004, “Surface Stress Driven Reorientation of Gold Nanowires
,” Phys. Rev. B
0163-1829, 70
(7
), p. 075413
.3.
Wang
, J.
, Kulkarni
, A. J.
, Ke
, F. J.
, Bai
, Y. L.
, and Zhou
, M.
, 2008, “Novel Mechanical Behavior of ZnO Nanorods
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 197
, pp. 3182
–3189
.4.
Gudiksen
, M. K.
, Lauhon
, L. J.
, Wang
, J.
, Smith
, D. C.
, and Lieber
, C. M.
, 2002, “Growth of Nanowire Superlattice Structures for Nanoscale Photonics and Electronics
,” Nature (London)
0028-0836, 415
, pp. 617
–619
.5.
Huang
, M. H.
, Mao
, S.
, Feick
, H.
, Yan
, H.
, Wu
, Y.
, Kind
, H.
, Weber
, E.
, Russo
, R.
, and Yang
, P.
, 2001, “Room-Temperature Ultraviolet Nanowire Nanolasers
,” Science
0036-8075, 292
, pp. 1897
–1899
.6.
Wang
, Z. L.
, and Song
, J.
, 2006, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays
,” Science
0036-8075, 312
, pp. 242
–246
.7.
Zhu
, Y.
, and Espinosa
, H. D.
, 2004, “Effect of Temperature on Capacitive RF MEMS Switch Performance—a Coupled-Field Analysis
,” J. Micromech. Microeng.
0960-1317, 14
, pp. 1270
–1279
.8.
Mercado
, L. L.
, Lee
, T. Y. T.
, Kuo
, S. M.
, and Amrine
, C.
, 2003, “Thermal Solutions for Discrete and Wafer-Level RF MEMS Switch Packages
,” IEEE Trans. Adv. Packag.
1521-3323, 26
, pp. 318
–326
.9.
van Spengen
, W. M.
, Puers
, R.
, Mertens
, R.
, and De Wolf
, I.
, 2003, “A Low Frequency Electrical Test Set-Up for the Reliability Assessment of Capacitive RF MEMS Switches
,” J. Micromech. Microeng.
0960-1317, 13
, pp. 604
–612
.10.
Espinosa
, H. D.
, Zhu
, Y.
, Fischer
, M.
, and Hutchinson
, J.
, 2003, “An Experimental/Computational Approach to Identify Moduli and Residual Stress in MEMS Radio-Frequency Switches
,” Exp. Mech.
0014-4851, 43
(3
), pp. 309
–316
.11.
Doerner
, M. F.
, Gardner
, D. S.
, and Nix
, W. D.
, 1986, “Plastic Properties of Thin Films on Substrates as Measured by Submicron Indentation Hardness and Substrate Curvature Techniques
,” J. Mater. Res.
0884-2914, 1
(6
), pp. 845
–51
.12.
McInnerney
, E. J.
, and Flinn
, P. A.
, 1982, “Diffusion of Moisture in Thin Films
,” Proceedings of the 20th IEEE IRPS Symposium
, New York.13.
Pethica
, J. B.
, Hutchings
, R.
, and Oliver
, W. C.
, 1983, Hardness Measurement at Penetration Depths as Small as 20 nm
, Taylor & Francis
, London
, pp. 593
–606
.14.
Doerner
, M. F.
, and Nix
, W. D.
, 1986, “A Method for Interpreting the Data From Depth-Sensing Indentation Instruments
,” J. Mater. Res.
0884-2914, 1
(4
), pp. 601
–609
.15.
Venkatraman
, R.
, and Bravman
, J. C.
, 1992, “Separation of Film Thickness and Grain Boundary Strengthening Effects in Al Thin Films on Si
,” J. Mater. Res.
0884-2914, 7
(8
), pp. 2040
–2048
.16.
Venkatraman
, R.
, Bravman
, J. C.
, Nix
, W. D.
, Avies
, P. W. D.
, Flinn
, P. A.
, and Fraser
, D. B.
, 1990, “Mechanical Properties and Microstructural Characterization of Al-0.5% Cu Thin Films
,” J. Electron. Mater.
0361-5235, 19
(11
), pp. 1231
–1237
.17.
Oliver
, W. C.
, and Pharr
, G. M.
, 1992, “An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments
,” J. Mater. Res.
0884-2914, 7
(6
), pp. 1564
–1583
.18.
Suresh
, S.
, Nieh
, T. G.
, and Choi
, B. W.
, 1999, “Nano-Indentation of Copper Thin Films on Silicon Substrates
,” Scr. Mater.
1359-6462, 41
(9
), pp. 951
–957
.19.
Gouldstone
, A.
, Koh
, H. J.
, Zeng
, K. Y.
, Giannakopoulos
, A. E.
, and Suresh
, S.
, 2000, “Discrete and Continuous Deformation During Nanoindentation of Thin Films
,” Acta Mater.
1359-6454, 48
(9
), pp. 2277
–2295
.20.
Saha
, R.
, and Nix
, W. D.
, 2002, “Effects of the Substrate on the Determination of Thin Film Mechanical Properties by Nanoindentation
,” Acta Mater.
1359-6454, 50
(1
), pp. 23
–38
.21.
Pharr
, G. M.
, and Oliver
, W. C.
, 1992, “Measurement of Thin Film Mechanical Properties Using Nanoindentation
,” MRS Bull.
0883-7694, 17
(7
), pp. 28
–33
.22.
Vinci
, R. P.
, and Vlassak
, J. J.
, 1996, “Mechanical Behavior of Thin Films
,” Annu. Rev. Mater. Sci.
0084-6600, 26
, pp. 431
–462
.23.
Xiang
, Y.
, Chen
, X. L.
, and Vlassak
, J. J.
, 2002, “The Mechanical Properties of Electroplated Cu Thin Films Measured by Means of the Bulge Test Technique
,” Mater. Res. Soc. Symp. Proc.
0272-9172, 695
, pp. L4.9.1
–L4.9.6
.24.
Xiang
, Y.
, Tsui
, T. Y.
, and Vlassak
, J. J.
, 2006, “The Mechanical Properties of Freestanding Electroplated Cu Thin Films
,” J. Mater. Res.
0884-2914, 21
(6
), pp. 1607
–1618
.25.
Xiang
, Y.
, and Vlassak
, J. J.
, 2006, “Bauschinger and Size Effects in Thin-Film Plasticity
,” Acta Mater.
1359-6454, 54
, pp. 5449
–5460
.26.
Vlassak
, J. J.
, and Nix
, W. D.
, 1992, “A New Bulge Test Technique for the Determination of Young’s Modulus and Poisson Ratio of Thin-Films
,” Mater. Res. Soc. Symp. Proc.
0272-9172, 7
(12
), pp. 3242
–3249
.27.
Small
, M. K.
, Vlassak
, J. J.
, Powel
, S. F.
, Daniels
, B. J.
, and Nix
, W. D.
, 1993, “Accuracy and Reliability of Bulge Test Experiments
,” Mater. Res. Soc. Symp. Proc.
0272-9172, 308
, pp. 159
–164
.28.
Paviot
, V. M.
, Vlassak
, J. J.
, and Nix
, W. D.
, 1995, “Measuring the Mechanical Properties of Thin Metal Films by Means of Bulge Testing of Micromachined Windows
,” Mater. Res. Soc. Symp. Proc.
0272-9172, 356
, pp. 579
–584
.29.
Wei
, X.
, Lee
, D.
, Shim
, S.
, Chen
, X.
, and Kysar
, J. W.
, 2007, “Plane-Strain Bulge Test for Nanocrystalline Copper Thin Films
,” Scr. Mater.
1359-6462, 57
, pp. 541
–544
.30.
Fleck
, N. A.
, and Hutchinson
, J. W.
, 2001, “A Reformulation of Strain Gradient Plasticity
,” J. Mech. Phys. Solids
0022-5096, 49
(10
), pp. 2245
–2271
.31.
Haque
, M. A.
, and Saif
, M. T. A.
, 2002, “Mechanical Behavior of 30–50 nm Thick Aluminum Films Under Uniaxial Tension
,” Scr. Mater.
1359-6462, 47
(12
), pp. 863
–867
.32.
Minor
, A. M.
, Asif
, S. A. S.
, Shan
, Z. W.
, Stach
, E. A.
, Cryrankowski
, E.
, Wyrobek
, T. J.
, and Warren
, O. L.
, 2006, “A New View of the Onset of Plasticity During the Nanoindentation of Aluminum
,” Nature Mater.
1476-1122, 5
, pp. 697
–702
.33.
Espinosa
, H. D.
, Prorok
, B. C.
, and Fischer
, M.
, 2001, “A Novel Experimental Technique For Testing Thin Films and MEMS Materials
,” Proceedings of the SEM Annual Conference on Experimental and Applied Mechanics
, Portland, OR.34.
Espinosa
, H. D.
, Prorok
, B. C.
, and Fischer
, M.
, 2003, “A Methodology for Determining Mechanical Properties of Freestanding Thin Films and MEMS Materials
,” J. Mech. Phys. Solids
0022-5096, 51
(1
), pp. 47
–67
.35.
Espinosa
, H. D.
, Prorok
, B. C.
, Peng
, B.
, Kim
, K. H.
, Moldovan
, N.
, Auciello
, O.
, Carlisle
, J. A.
, Gruen
, D. M.
, and Mancini
, D. C.
, 2003, “Mechanical Properties of Ultrananocrystalline Diamond Thin Films Relevant to MEMS/NEMS Devices
,” Exp. Mech.
0014-4851, 43
, pp. 256
–269
.36.
Espinosa
, H. D.
, Peng
, B.
, Prorok
, B. C.
, Moldovan
, N.
, Auciello
, O.
, Carlisle
, J. A.
, Gruen
, D. M.
, and Mancini
, D. C.
, 2003, “Fracture Strength of Ultrananocrystalline Diamond Thin Films—Identification of Weibull Parameters
,” J. Appl. Phys.
0021-8979, 94
(9
), pp. 6076
–6084
.37.
Espinosa
, H. D.
, Prorok
, B. C.
, and Peng
, B.
, 2004, “Plasticity Size Effects in Free-Standing Submicron Polycrystalline FCC Films Subjected to Pure Tension
,” J. Mech. Phys. Solids
0022-5096, 52
(3
), pp. 667
–689
.38.
Yu
, D. Y. W.
, and Spaepen
, F.
, 2004, “The Yield Strength of Thin Copper Films on Kapton
,” J. Appl. Phys.
0021-8979, 95
(6
), pp. 2991
–2997
.39.
Espinosa
, H. D.
, Berbenni
, S.
, Panico
, M.
, and Schwarz
, K.
, 2005, “An Interpretation of Size-Scale Plasticity in Geometrically Confined Systems
,” Proc. Natl. Acad. Sci. U.S.A.
0027-8424, 102
, pp. 16933
–16938
.40.
Haque
, M. A.
, and Saif
, M. T. A.
, 2002, “In-Situ Tensile Testing of Nano-Scale Specimens in SEM and TEM
,” Exp. Mech.
0014-4851, 42
(1
), pp. 123
–128
.41.
Haque
, M. A.
, and Saif
, M. T. A.
, 2004, “Deformation Mechanisms in Free-Standing Nanoscale Thin Films: A Quantitative in situ Transmission Electron Microscope Study
,” Proc. Natl. Acad. Sci. U.S.A.
0027-8424, 101
(17
), pp. 6335
–6340
.42.
Gianola
, D. S.
, Van Petegem
, S.
, Legros
, M.
, Brandstetter
, S.
, Van Swygenhoven
, H.
, and Hemker
, K. J.
, 2006, “Stress-Assisted Discontinuous Grain Growth and Its Effect on the Deformation Behavior of Nanocrystalline Aluminum Thin Films
,” Acta Mater.
1359-6454, 54
(8
), pp. 2253
–2263
.43.
Gianola
, D. S.
, Eberl
, C.
, Cheng
, X.
, and Hemker
, K. J.
, 2008, “Stress-Driven Surface Topography Evolution in Nanocrystalline Al Thin Films
,” Adv. Mater.
0935-9648, 20
, pp. 303
–308
.44.
Gianola
, D. S.
, and Sharpe
, W. N.
, 2004, “Techniques for Testing Thin Films in Tension
,” Exp. Tech.
0732-8818, 28
(5
), pp. 23
–27
.45.
Rajagopalan
, J.
, Han
, J. H.
, and Saif
, M. T. A.
, 2007, “Plastic Deformation Recovery in Freestanding Nanocrystalline Aluminum and Gold Thin Films
,” Science
0036-8075, 315
, pp. 1831
–1834
.46.
Robertson
, I. M.
, 1986, “Microtwin Formation in Deformed Nickel
,” Philos. Mag. A
0141-8610, 54
(6
), pp. 821
–835
.47.
Robertson
, I. M.
, Lee
, T. C.
, Rozenak
, P.
, Bond
, G. M.
, and Birnbaum
, H. K.
, 1989, “Dynamic Observations of the Transfer of Slip Across a Grain-Boundary
,” Ultramicroscopy
0304-3991, 30
(1–2
), pp. 70
–75
.48.
Robertson
, I. M.
, Vetrano
, J. S.
, Kirk
, M. A.
, and Jenkins
, M. L.
, 1991, “On the Formation of Vacancy Type Dislocation Loops from Displacement Cascades in Nickel
,” Philos. Mag. A
0141-8610, 63
(2
), pp. 299
–318
.49.
Matsukawa
, Y.
, and Zinkle
, S. J.
, 2004, “Dynamic Observation of the Collapse Process of a Stacking Fault Tetrahedron by Moving Dislocations
,” J. Nucl. Mater.
0022-3115, 329–333
, pp. 919
–923
.50.
Matsukawa
, Y.
, Osetsky
, Y. N.
, Stoller
, R. E.
, and Zinkle
, S. J.
, 2005, “The Collapse of Stacking-Fault Tetrahedra by Interaction With Gliding Dislocations
,” Mater. Sci. Eng., A
0921-5093, 400–401
, pp. 366
–369
.51.
Osetsky
, Y. N.
, Matsukawa
, Y.
, Stoller
, R. E.
, and Zinkle
, S. J.
, 2006, “On the Features of Dislocation-Obstacle Interaction in Thin Films: Large-Scale Atomistic Simulation
,” Philos. Mag. Lett.
0950-0839, 86
(8
), pp. 511
–519
.52.
Stach
, E. A.
, Freeman
, T.
, Minor
, A. M.
, Owen
, D. K.
, Cumings
, J.
, Wall
, M. A.
, Chraska
, T.
, Hull
, R.
, Morris
, J. J. W.
, Zettl
, A.
, and Dahmen
, U.
, 2001, “Development of a Nanoindenter for In-Situ Transmission Electron Microscopy
,” Microsc. Microanal.
1431-9276, 7
(6
), pp. 507
–517
.53.
Minor
, A. M.
, Morris
, J. J. W.
, and Stach
, E. A.
, 2001, “Quantitative in situ Nanoindentation in an Electron Microscope
,” Appl. Phys. Lett.
0003-6951, 79
(11
), pp. 1625
–1627
.54.
Minor
, A. M.
, Lilleodden
, E. T.
, Stach
, E. A.
, and Morris
, J. J. W.
, 2004, “Direct Observations of Incipient Plasticity During Nanoindentation of Al
,” J. Mater. Res.
0884-2914, 19
(1
), pp. 176
–182
.55.
Uchic
, M. D.
, and Dimiduk
, D. M.
, 2005, “A Methodology to Investigate Size Scale Effects in Crystalline Plasticity Using Uniaxial Compression Testing
,” Mater. Sci. Eng., A
0921-5093, 400–401
, pp. 268
–278
.56.
Uchic
, M. D.
, Dimiduk
, D. M.
, Florando
, J. N.
, and Nix
, W. D.
, 2004, “Sample Dimensions Influence Strength and Crystal Plasticity
,” Science
0036-8075, 305
, pp. 986
–989
.57.
Greer
, J. R.
, Oliver
, W. C.
, and Nix
, W. D.
, 2005, “Size Dependence of Mechanical Properties of Gold at the Micron Scale in the Absence of Strain Gradients
,” Acta Mater.
1359-6454, 53
(6
), pp. 1821
–1830
.58.
Shan
, Z. W.
, Mishra
, R. K.
, Asif
, S. A. S.
, Warren
, O. L.
, and Minor
, A. M.
, 2007, “Mechanical Annealing and Source-Limited Deformation in Submicrometer-Diameter Ni Crystals
,” Nature Mater.
1476-1122, 7
, pp. 115
–119
.59.
Tang
, H.
, Schwarz
, K. W.
, and Espinosa
, H. D.
, 2007, “Dislocation Escape-Related Size Effects in Single-Crystal Micropillars Under Uniaxial Compression
,” Acta Mater.
1359-6454, 55
, pp. 1607
–1616
.60.
Tang
, H.
, Schwarz
, K. W.
, and Espinosa
, H. D.
, 2008, “Dislocation-Source Shutdown and the Plastic Behavior of Single-Crystal Micropillars
,” Phys. Rev. Lett.
0031-9007, 100
(18
), p. 185503
.61.
Madec
, R.
, Devincre
, B.
, Kubin
, L.
, Hoc
, T.
, and Rodney
, D.
, 2003, “The Role of Collinear Interaction in Dislocation-Induced Hardening
,” Science
0036-8075, 301
, pp. 1879
–1882
.62.
Greer
, J. R.
, and Nix
, W. D.
, 2006, “Nonoscale Gold Pillars Strengthened Through Dislocation Starvation
,” Phys. Rev. B
0163-1829, 73
, p. 245410
.63.
Cui
, Y.
, Wei
, Q.
, Park
, H.
, and Lieber
, C. M.
, 2001, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species
,” Science
0036-8075, 293
(5533
), pp. 1289
–1292
.64.
Bai
, X. D.
, Gao
, P. X.
, Wang
, Z. L.
, and Wang
, E. G.
, 2003, “Dual-Mode Mechanical Resonance of Individual ZnO Nanobelts
,” Appl. Phys. Lett.
0003-6951, 82
(26
), pp. 4806
–4808
.65.
Simmons
, G.
, and Wang
, H.
, 1971, Single Crystal Elastic Constants and Calculated Aggregate Properties
, MIT Press
, Cambridge, MA
.66.
Chen
, C. Q.
, Shi
, Y.
, Zhang
, Y. S.
, Zhu
, J.
, and Yan
, Y. J.
, 2006, “Size Dependence of Young's Modulus in ZnO Nanowires
,” Phys. Rev. Lett.
0031-9007, 96
, p. 075505
.67.
Ni
, H.
, and Li
, X.
, 2006, “Young’s Modulus of ZnO Nanobelts Measured using Atomic Force Microscopy and Nanoindentation Techniques
,” Nanotechnology
0957-4484, 17
, pp. 3591
–3597
.68.
Song
, J.
, Wang
, X.
, Riedo
, E.
, and Wang
, Z. L.
, 2005, “Elastic Property of Vertically Aligned Nanowires
,” Nano Lett.
1530-6984, 5
(10
), pp. 1954
–1958
.69.
Hoffmann
, S.
, Ostlund
, F.
, Michler
, J.
, Fan
, H. J.
, Zacharias
, M.
, Christiansen
, S. H.
, and Ballif
, C.
, 2007, “Fracture Strength and Young’s Modulus of ZnO Nanowires
,” Nanotechnology
0957-4484, 18
, pp. 205503
.70.
Zhou
, P.
, Wu
, C.
, and Li
, X.
, 2008, “Three-Point Bending Young’s Modulus of Nanowires
,” Meas. Sci. Technol.
0957-0233, 19
(11
), p. 115703
.71.
Poncharal
, P.
, Wang
, Z. L.
, Ugarte
, D.
, and de Heer
, W. A.
, 1999, “Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes
,” Science
0036-8075, 283
(5407
), pp. 1513
–1516
.72.
Salvetat
, J. P.
, Briggs
, G. A. D.
, Bonard
, J. M.
, Bacsa
, R. R.
, Kulik
, A. J.
, Stockli
, T.
, Burnham
, N. A.
, and Forro
, L.
, 1999, “Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes
,” Phys. Rev. Lett.
0031-9007, 82
(5
), pp. 944
–947
.73.
Yu
, M. F.
, Lourie
, O.
, Dyer
, M. J.
, Moloni
, K.
, Kelly
, T. F.
, and Ruoff
, R. S.
, 2000, “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load
,” Science
0036-8075, 287
(5453
), pp. 637
–640
.74.
Stan
, G.
, Ciobanu
, C. V.
, Parthangal
, P. M.
, and Cook
, R. F.
, 2007, “Diameter-Dependent Radial and Tangential Elastic Moduli of ZnO Nanowires
,” Nano Lett.
1530-6984, 7
(12
), pp. 3691
–3697
.75.
Stan
, G.
, Krylyuk
, S.
, Davydov
, A. V.
, Vaudin
, M.
, Bendersky
, L. A.
, and Cook
, R. F.
, 2008, “Surface Effects on the Elastic Modulus of Te Nanowires
,” Appl. Phys. Lett.
0003-6951, 92
, p. 241908
.76.
Desai
, A. V.
, and Haque
, M. A.
, 2006, “Mechanical Properties of ZnO Nanowires
,” Sens. Actuators, A
0924-4247, 134
(1
), pp. 169
–176
.77.
Samuel
, B. A.
, Desai
, A. V.
, and Haque
, M. A.
, 2006, “Design and Modeling of a MEMS Pico-Newton Loading/Sensing Device
,” Sens. Actuators, A
0924-4247, 127
, pp. 155
–162
.78.
Agrawal
, R.
, Peng
, B.
, Gdoutos
, E. E.
, and Espinosa
, H. D.
, 2008, “Elasticity Size Effects in ZnO Nanowires—a Combined Experimental-Computational Approach
,” Nano Lett.
1530-6984, 8
(11
), pp. 3668
–3674
.79.
Zhu
, Y.
, Moldovan
, N.
, and Espinosa
, H. D.
, 2005, “A Microelectromechanical Load Sensor for in situ Electron and X-Ray Microscopy Tensile Testing of Nanostructures
,” Appl. Phys. Lett.
0003-6951, 86
(1
), pp. 013506
.80.
Zhu
, Y.
, Corigliano
, A.
, and Espinosa
, H. D.
, 2006, “A Thermal Actuator for Nanoscale In-Situ Microscopy Testing: Design and Characterization
,” J. Micromech. Microeng.
0960-1317, 16
, pp. 242
–253
.81.
Zhu
, Y.
, and Espinosa
, H. D.
, 2005, “An Electromechanical Material Testing System for in situ Electron Microscopy and Applications
,” Proc. Natl. Acad. Sci. U.S.A.
0027-8424, 102
(41
), pp. 14503
–14508
.82.
Espinosa
, H. D.
, Zhu
, Y.
, and Moldovan
, N.
, 2007, “Design and Operation of a MEMS-Based Material Testing System for Nanomechanical Characterization
,” J. Microelectromech. Syst.
1057-7157, 16
(5
), pp. 1219
–1231
.83.
Iijima
, S.
, 1991, “Helical Microtubules of Graphitic Carbon
,” Nature (London)
0028-0836, 354
, pp. 56
–58
.84.
Koziol
, K.
, Vilatela
, J.
, Moisala
, A.
, Motta
, M.
, Cunniff
, P.
, Sennett
, M.
, and Windle
, A.
, 2007, “High-Performance Carbon Nanotube Fiber
,” Science
0036-8075, 318
, pp. 1892
–1896
.85.
Tans
, S. J.
, Verschueren
, A. R. M.
, and Dekker
, C.
, 1998, “Room-Temperature Transistor Based on a Single Carbon Nanotube
,” Nature (London)
0028-0836, 393
, pp. 49
–52
.86.
Hu
, J.
, Ouyang
, M.
, Yang
, P.
, and Lieber
, C. M.
, 1999, “Controlled Growth and Electrical Properties of Heterojunctions of Carbon Nanotubes and Silicon Nanowires
,” Nature (London)
0028-0836, 399
, pp. 48
–51
.87.
Odom
, T. W.
, Huang
, J. -L.
, and Lieber
, C. M.
, 2002, “Single-Walled Carbon Nanotubes: From Fundamental Studies to New Device Concepts
,” Ann. N. Y. Acad. Sci.
, 960
, pp. 203
–215
. 0077-892388.
Ouyang
, M.
, Huang
, J. -L.
, and Lieber
, C. M.
, 2002, “Fundamental Electronic Properties and Applications of Single-Walled Carbon Nanotubes
,” Acc. Chem. Res.
0001-4842, 35
, pp. 1018
–1025
.89.
Ogata
, S.
, and Shibutani
, Y.
, 2003, “Ideal Tensile Strength and Band Gap of Single-Walled Carbon Nanotubes
,” Phys. Rev. B
0163-1829, 68
, p. 165409
.90.
Ozaki
, T.
, Iwasa
, Y.
, and Mitani
, T.
, 2000, “Stiffness of Single-Walled Carbon Nanotubes Under Large Strain
,” Phys. Rev. Lett.
0031-9007, 84
, pp. 1712
–1715
.91.
Dumitrica
, T.
, Belytschko
, T.
, and Yakobson
, B. I.
, 2003, “Bond-Breaking Bifurcation States in Carbon Nanotube Fracture
,” J. Chem. Phys.
0021-9606, 118
, pp. 9485
–9488
.92.
Troya
, D.
, Mielke
, S. L.
, and Schatz
, G. C.
, 2003, “Carbon Nanotube Fracture—Differences Between Quantum Mechanical Mechanisms and those of Empirical Potentials
,” Chem. Phys. Lett.
0009-2614, 382
, pp. 133
–141
.93.
Peng
, B.
, Locascio
, M.
, Zapol
, P.
, Li
, S.
, Mielke
, S.
, Schatz
, G.
, and Espinosa
, H. D.
, 2008, “Measurements of Near-Ultimate Strength for Multiwalled Carbon Nanotubes and Irradiation-Induced Crosslinking Improvements
,” Nat. Nanotechnol.
1748-3387, 3
(10
), pp. 626
–631
.94.
Stach
, E. A.
, 2008, “Nanotubes Reveal Their True Strength
,” Nat. Nanotechnol.
1748-3387, 3
, pp. 586
–587
.95.
Treacy
, M. M. J.
, Ebbesen
, T. W.
, and Gibson
, J. M.
, 1996, “Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes
,” Nature (London)
0028-0836, 381
(6584
), pp. 678
–680
.96.
Wong
, E.
, Sheehan
, P.
, and Lieber
, C.
, 1997, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes
,” Science
0036-8075, 277
, pp. 1971
–1975
.97.
Walters
, D. A.
, Ericson
, L. M.
, Casavant
, M. J.
, Liu
, J.
, Colbert
, D. T.
, Smith
, K. A.
, and Smalley
, R. E.
, 1999, “Elastic Strain of Freely Suspended Single-Wall Carbon Nanotube Ropes
,” Appl. Phys. Lett.
0003-6951, 74
(25
), pp. 3803
–3805
.98.
Salvetat
, J. P.
, Kulik
, A. J.
, Bonard
, J. M.
, Briggs
, G. A. D.
, Stockli
, T.
, Metenier
, K.
, Bonnamy
, S.
, Beguin
, F.
, Burnham
, N. A.
, and Forro
, L.
, 1999, “Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes
,” Adv. Mater.
0935-9648, 11
(2
), pp. 161
–165
.99.
Mielke
, S. L.
, Troya
, D.
, Sulin
, Z.
, Li
, J. -L.
, Shaoping
, X.
, Roberto
, C. A. R.
, Ruoff
, R. S.
, Schatz
, G. C.
, and Belytschko
, T.
, 2004, “The Role of Vacancy Defects and Holes in the Fracture of Carbon Nanotubes
,” Chem. Phys. Lett.
0009-2614, 390
(4–6
), pp. 413
–420
.100.
Mielke
, S. L.
, Zhang
, S.
, Khare
, R.
, Ruoff
, R. S.
, Belytschko
, T.
, and Schatz
, G. C.
, 2007, “The Effects of Extensive Pitting on the Mechanical Properties of Carbon Nanotubes
,” Chem. Phys. Lett.
0009-2614, 446
, pp. 128
–132
.101.
Ding
, W.
, Calabri
, L.
, Kohlhaas
, K. M.
, Chen
, X.
, Dikin
, D. A.
, and Ruoff
, R. S.
, 2007, “Modulus, Fracture Strength, and Brittle Vs. Plastic Response of the Outer Shell of Arc Grown Multi-Walled Carbon Nanotubes
,” Exp. Mech.
0014-4851, 47
, pp. 25
–26
.102.
Barber
, A. H.
, Kaplan-Ashiri
, I.
, Cohen
, S. R.
, Tenne
, R.
, and Wagner
, H. D.
, 2005, “Stochastic Strength of Nanotubes: An Appraisal of Available Data
,” Compos. Sci. Technol.
0266-3538, 65
, pp. 2380
–2384
.103.
Barber
, A. H.
, Andrews
, R.
, Schadler
, L. S.
, and Wagner
, H. D.
, 2005, “On the Tensile Strength Distribution of Multiwalled Carbon Nanotubes
,” Appl. Phys. Lett.
0003-6951, 87
(203106
), pp. 1
–3
.104.
Smith
, B. W.
, and Luzzi
, D. E.
, 2001, “Electron Irradiation Effects in Single Wall Carbon Nanotubes
,” J. Appl. Phys.
0021-8979, 90
, pp. 3509
–3515
.105.
Lee
, C.
, Wei
, X.
, Kysar
, J. W.
, and Hone
, J.
, 2008, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,” Science
0036-8075, 321
, pp. 385
–388
.106.
Khare
, R.
, Mielke
, S. L.
, Paci
, J. T.
, Zhang
, S.
, Ballarini
, R.
, Schatz
, G. C.
, and Belytschko
, T.
, 2007, “Coupled Quantum Mechanical/Molecular Mechanical Modeling of the Fracture of Defective Carbon Nanotubes and Graphene Sheets
,” Phys. Rev. B
0163-1829, 75
, p. 075412
.107.
Nam
, C. -Y.
, Jaroenapibal
, P.
, Tham
, D.
, Luzzi
, D. E.
, Evoy
, S.
, and Fischer
, J. E.
, 2006, “Diameter-Dependent Electromechanical Properties of GaN Nanowires
,” Nano Lett.
1530-6984, 6
(2
), pp. 153
–158
.108.
Ni
, H.
, Li
, X.
, Cheng
, G.
, and Klie
, R.
, 2006, “Elastic Modulus of Single-Crystal GaN Nanowires
,” J. Mater. Res.
0884-2914, 21
(11
), pp. 2882
–2887
.109.
Agrawal
, R.
, B.
Peng
, and H. D.
Espinosa
, 2009, “The Effect of Growth Orientation and P-Type Doping on the Elastic Modulus and Fracture of Single-Crystal GaN Nanowires
,” to be published.110.
Schwarz
, R. B.
, Khachaturan
, K.
, and Weber
, E. R.
, 1997, “Elastic Moduli of Gallium Nitride
,” Appl. Phys. Lett.
0003-6951, 70
(9
), pp. 1122
–1124
.111.
Wu
, B.
, Heidelberg
, A.
, and Boland
, J. J.
, 2005, “Mechanical Properties of Ultrahigh-Strength Gold Nanowires
,” Nature Mater.
1476-1122, 4
(7
), pp. 525
–529
.112.
Wu
, B.
, Heidelberg
, A.
, Boland
, J. J.
, Sader
, J. E.
, Sun
, X. M.
, and Li
, Y. D.
, 2006, “Microstructure-Hardened Silver Nanowires
,” Nano Lett.
1530-6984, 6
(3
), pp. 468
–472
.113.
Petrova
, H.
, Jorge
, P. -J.
, Zhenyuan
, Z.
, Zhang
, J.
, Kosel
, T.
, and Hartland
, G. V.
, 2006, “Crystal Structure Dependence of the Elastic Constants of Gold Nanorods
,” J. Mater. Chem.
0959-9428, 16
, pp. 3957
–3963
.114.
Liang
, H.
, Upmanyu
, M.
, and Huang
, H.
, 2005, “Size-Dependent Elasticity of Nanowires: Nonlinear Effects
,” Phys. Rev. B
0163-1829, 71
(24
), pp. 241403
.115.
Diao
, J.
, Gall
, K.
, and Dunn
, M. L.
, 2004, “Atomistic Simulation of the Structure and Elastic Properties of Gold Nanowires
,” J. Mech. Phys. Solids
0022-5096, 52
(9
), pp. 1935
–1962
.116.
Park
, H. S.
, and Klein
, P. A.
, 2008, “Surface Stress Effects on the Resonant Properties of Metal Nanowires: The Importance of Finite Deformation Kinematics and the Impact of the Residual Surface Stress
,” J. Mech. Phys. Solids
0022-5096, 56
(11
), pp. 3144
–3166
.117.
Cuenot
, S.
, Fretigny
, C.
, Demoustier-Champagne
, S.
, and Nysten
, B.
, 2004, “Surface Tension Effect on the Mechanical Properties of Nanomaterials Measured by Atomic Force Microscopy
,” Phys. Rev. B
0163-1829, 69
, p. 165410
.118.
Zhou
, L. G.
, and Huang
, H.
, 2004, “Are Surface Elastically Softer or Stiffer
,” Appl. Phys. Lett.
0003-6951, 84
(11
), pp. 1940
–1942
.119.
McDowell
, M. T.
, Leach
, A. M.
, and Gall
, K.
, 2008, “Bending and Tensile Deformation of Metallic Nanowires
,” Modell. Simul. Mater. Sci. Eng.
0965-0393, 16
(045003
), pp. 1
–13
.120.
Peng
, B.
, Sun
, Y. G.
, Zhu
, Y.
, Wang
, H. -H.
, and Espinosa
, H. D.
, 2008, “Nanoscale Testing of One-Dimensional Nanostructures
,” Micro and Nano Mechanical Testing of Materials and Devices
, F.
Yang
and C. J. M.
Li
, eds., Springer
, New York
, pp. 287
–311
.121.
Zhu
, T.
, Li
, J.
, Samanta
, A.
, Leach
, A.
, and Gall
, K.
, 2008, “Temperature and Strain-Rate Dependence of Surface Dislocation Nucleation
,” Phys. Rev. Lett.
0031-9007, 100
, p. 025502
.122.
Van Swygenhoven
, H.
, Derlet
, P. M.
, and Froseth
, A. G.
, 2004, “Stacking Fault Energies and Slip in Nanocrystalline Metals
,” Nature Mater.
1476-1122, 3
, pp. 399
–403
.123.
Van Swygenhoven
, H.
, 2006, “Dislocation Propagation Versus Dislocation Nucleation
,” Nature Mater.
1476-1122, 5
, p. 841
.124.
Baskes
, M. I.
, 1992, “Modified Embedded-Atom Potentials for Cubic Materials and Impurities
,” Phys. Rev. B
0163-1829, 46
(5
), pp. 2727
–2742
.125.
Baskes
, M. I.
, Srinivasan
, S. G.
, Valone
, S. M.
, and Hoagland
, R. G.
, 2007, “Multistate Modified Embedded Atoms Method
,” Phys. Rev. B
0163-1829, 75
, p. 094113
.126.
Gavini
, V.
, Bhattacharya
, K.
, and Ortiz
, M.
, 2007, “Quasi-Continuum Orbital-Free Density-Functional Theory: A Route to Multi-Million Atom Non-Periodic DFT Calculation
,” J. Mech. Phys. Solids
0022-5096, 55
, pp. 697
–718
.127.
Fago
, M.
, Hayes
, R. L.
, Carter
, E. A.
, and Ortiz
, M.
, 2004, “Density-Functional-Theory-Based Local Quasicontinuum Method: Prediction of Dislocation Nucleation
,” Phys. Rev. B
0163-1829, 70
, p. 100102
.128.
Armstrong
, M. R.
, Boyden
, K.
, Browning
, N. D.
, Campbell
, G. H.
, Colvin
, J. D.
, DeHope
, W. J.
, Frank
, A. M.
, Gibson
, D. J.
, Hartemann
, F.
, Kim
, J. S.
, King
, W. E.
, LaGrange
, T. B.
, Pyke
, B. J.
, Reed
, B. W.
, Shuttlesworth
, R. M.
, Stuart
, B. C.
, and Torralva
, B. R.
, 2007, “Practical Considerations for High Spatial and Temporal Resolution Dynamic Transmission Electron Microscopy
,” Ultramicroscopy
0304-3991, 107
, pp. 356
–367
.129.
Kim
, J. S.
, LaGrange
, T.
, Reed
, B. W.
, Taheri
, M. L.
, Armstrong
, M. R.
, King
, W. E.
, Browning
, N. D.
, and Campbell
, G. H.
, 2008, “Imaging of Transient Structures Using Nanosecond in situ TEM
,” Science
0036-8075, 321
(5895
), pp. 1472
–1475
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.