Electric discharge machining (EDM) has been proven as an alternate process for machining complex and intricate shapes from the conductive ceramic composites. Al2O3 based electrodischarge machinable Al2O3SiCwTiC ceramic composite is a potential substitute for traditional materials due to their high hardness, excellent chemical, and mechanical stability under a broad range of temperature, and high specific stiffness. The right selection of the machining condition is the most important aspect to take into consideration in the EDM. The present work correlates the inter-relationships of various EDM machining parameters, namely, discharge current, pulse-on time, duty cycle, and gap voltage on the metal removal rate (MRR), electrode wear ratio (EWR), and surface roughness using the response surface methodology (RSM) while EDM of Al2O3SiCwTiC ceramic composite. Analysis of variance is used to study the significance of process variables on MRR, EWR, and surface roughness. The experimental results reveal that discharge current, pulse-on time, and duty cycle significantly affected MRR and EWR, while discharge current and pulse-on time affected the surface roughness. The validation of developed models shows that the MRR EWR and surface roughness of EDM of Al2O3SiCwTiC ceramic can be estimated with reasonable accuracy using the second-order models. Finally, trust-region method for nonlinear minimization is used to find the optimum levels of the parameters. The surface and subsurface damage have also been assessed and characterized using scanning electron microscopy. This study reveals that EDMed material unevenness increases with discharge current and pulse-on time.

1.
Xu
,
H. H. K.
,
Jahanmir
,
S.
, and
Ives
,
L. K.
, 1996, “
Material Removal and Damage Formation Mechanisms in Grinding Silicon Nitride
,”
J. Mater. Res.
0884-2914,
11
(
7
), pp.
1717
1724
.
2.
Sarkar
,
B. R.
,
Doloi
,
B.
, and
Bhattacharyya
,
B.
, 2006, “
Parametric Analysis on Electro Chemical Discharge Machining of Silicon Nitride Ceramics
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
28
, pp.
873
881
.
3.
Tuersley
,
I. P.
,
Jawaid
,
A.
, and
Pashby
,
I. R.
, 1994, “
Review: Various Methods of Machining Advanced Ceramic Materials
,”
J. Mater. Process. Technol.
0924-0136,
42
, pp.
377
390
.
4.
Put
,
S.
,
Vleugels
,
J.
,
Biest
,
O. V.
,
Trueman
,
C.
, and
Huddleston
,
J.
, 2001, “
Die Sink Electro Discharge Machining of Zirconia Based Composites
,”
Br. Ceram. Trans.
0967-9782,
100
(
5
), pp.
207
213
.
5.
Jones
,
A. H.
,
Trueman
,
C.
,
Dobedoe
,
R. S.
,
Huddleston
,
J.
, and
Lewis
,
M. H.
, 2001, “
Production and EDM of Si3N4–TiB2 Ceramics Composites
,”
Br. Ceram. Trans.
0967-9782,
100
(
2
), pp.
49
54
.
6.
Matsuo
,
T.
, and
Oshima
,
E.
, 1992, “
Investigation on the Optimum Carbide Content and Machining Condition for Wire EDM of Zirconia Ceramics
,”
CIRP Ann.
0007-8506,
41
(
1
), pp.
231
234
.
7.
Pitman
,
A.
, and
Huddleston
,
J.
, 2000, “
Electrical Discharge Machining of ZrO2/TiN Particulate Composite
,”
Br. Ceram. Trans.
0967-9782,
99
(
2
), pp.
77
84
.
8.
Nakamura
,
M.
,
Shigematsu
,
I.
,
Kanayama
,
K.
, and
Hirai
,
Y.
, 1991, “
Surface Damage in ZrB2 Based Composite Ceramics Induced by Electro Discharge Machining
,”
J. Mater. Sci.
0022-2461,
26
, pp.
6078
6082
.
9.
Fu
,
C. -T.
, and
Li
,
A.
, 1994, “
The Dependence of Surface Damage Induced by Electrical Discharge Machining on the Fracture Strength of Al2O3–Cr3C2 Composites
,”
Mater. Chem. Phys.
0254-0584,
39
, pp.
129
135
.
10.
Zhang
,
J. H.
,
Lee
,
T. C.
, and
Lau
,
W. S.
, 1997, “
Study on the Electro Discharge Machining of Hot Pressed Aluminium Oxide Based Ceramics
,”
J. Mater. Process. Technol.
0924-0136,
63
, pp.
908
912
.
11.
Chiang
,
K.
, 2008, “
Modeling and Analysis of the Effects of Machining Parameters on the Performance Characteristics in the EDM Process of Al2O3+TiC Mixed Ceramic
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
37
, pp.
523
533
.
12.
Chiang
,
K.
, and
Chang
,
F.
, 2007, “
Applying Grey Forecasting Method for Fitting and Predicting the Performance Characteristics of an Electro-conductive Ceramic (Al2O3+30%TiC) During Electrical Discharge Machining
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
33
, pp.
480
488
.
13.
Smirnov
,
B. I.
,
Nikolaev
,
V. I.
,
Orlova
,
T. S.
,
Shpeizman
,
V. V.
,
Arellano-Lopez
,
A. R. D.
,
Goretta
,
K. C.
,
Singh
,
D.
, and
Routbort
,
J. L.
, 1998, “
Mechanical Properties and Microstructure of an Al2O3–SiC–TiC Composite
,”
Mater. Sci. Eng., A
0921-5093,
242
, pp.
292
295
.
14.
Montgomery
,
D. C.
, 1991,
Design and Analysis of Experiments
,
Wiley
,
Singapore
.
15.
Lin
,
Y. C.
,
Cheng
,
C. H.
,
Su
,
B. L.
, and
Hwang
,
L. R.
, 2006, “
Machining Characteristics and Optimization of Machining Parameters of SKH 57 High Speed Steel Using Electrical Discharge Machining Based on Taguchi Method
,”
Mater. Manuf. Processes
1042-6914,
21
, pp.
922
929
.
16.
Chen
,
Y.
, and
Mahdavian
,
S. M.
, 1999, “
Parametric Study into Erosion Wear in a Computer Numerical Controlled Electro Discharge Machining Process
,”
Wear
0043-1648,
236
, pp.
350
354
.
17.
Ozgedik
,
A.
, and
Cogun
,
C.
, 2006, “
An Experimental Investigation of Tool Wear in Electric Discharge Machining
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
27
, pp.
488
500
.
18.
Wu
,
K. L.
,
Yan
,
B. H.
,
Huang
,
F. Y.
, and
Chen
,
S. C.
, 2005, “
Improvement of Surface Finish on SKD Steel Using Electro Discharge Machining With Aluminum and Surfactant Added Dielectric
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
, pp.
1195
1201
.
You do not currently have access to this content.