In this paper, time-independent plasticity is addressed within the thermodynamic framework with internal variables by Rice (1971, “Inelastic Constitutive Relations for Solids: An Internal Variable Theory and Its Application to Metal Plasticity,” J. Mech. Phys. Solids, 19, pp. 433–455). It is shown in this paper that the existence of a free energy function along with thermodynamic equilibrium conditions directly leads to associated flow rules. The time-independent inelastic behaviors can be fully determined by the Hessian matrix at the nondegenerate critical point of the free energy function. The normality rule of Hill and Rice (1973, “Elastic Potentials and the Structure of Inelastic Constitutive Laws,” SIAM J. Appl. Math., 25, pp. 448–461) or the Il'yushin (1961, “On a Postulate of Plasticity,” J. Appl. Math. Mech. 25, pp. 746–750) postulate is just a stability requirement of the thermodynamic equilibrium. The existence of a free energy functional which is not a direct function of the internal variables, along with thermodynamic equilibrium conditions also leads to associated flow rules. The time-independent inelastic behaviors with the free energy functional can be fully determined by the quasi Hessian matrix at the quasi critical point of the free energy functional. With the free energy functional, the thermodynamic forces conjugate to the internal variables are nonconservative and are constructed based on Darboux theorem. Based on the constructed nonconservative forces, it is shown that there may exist several possible thermodynamic equilibrium mechanisms for the thermodynamic system of the material sample. Therefore, the associated flow rules based on free energy functionals may degenerate into nonassociated flow rules. The symmetry of the conjugate forces plays a central role for the characteristics of time-independent plasticity.

References

1.
Rice
,
J. R.
,
1971
, “
Inelastic Constitutive Relations for Solids: An Internal Variable Theory and Its Application to Metal Plasticity
,”
J. Mech. Phys. Solids
,
19
, pp.
433
455
.10.1016/0022-5096(71)90010-X
2.
Kestin
,
J.
, and
Rice
,
J. R.
,
1970
, “
Paradoxes in the Application of Thermodynamics to Strained Solids
,”
A Critical Review of Thermodynamics
,
E. B.
Stuart
, A. J. Brainard, and B. Gal-Or, eds.,
Mono Book
,
Baltimore
, pp.
275
298
.
3.
Hill
,
R.
,
1967
, “
The Essential Structure of Constitutive Laws for Metal Composites and Polycrystals
,”
J. Mech. Phys. Solids
,
15
, pp.
79
95
.10.1016/0022-5096(67)90018-X
4.
Hill
,
R.
, and
Rice
,
J. R.
,
1973
, “
Elastic Potentials and the Structure of Inelastic Constitutive Laws
,”
SIAM J. Appl. Math.
,
25
, pp.
448
461
.10.1137/0125045
5.
Hill
,
R.
, and
Rice
,
J. R.
,
1972
, “
Constitutive Analysis of Elastic-Plastic Crystals at Arbitrary Strain
,”
J. Mech. Phys. Solids
,
20
, pp.
401
413
.10.1016/0022-5096(72)90017-8
6.
Rice
,
J. R.
,
1975
, “
Continuum Mechanics and Thermodynamics of Plasticity in Relation to Microscale Deformation Mechanisms
,”
Constitutive Equations in Plasticity
,
A. S.
Argon
, ed.,
MIT Press
,
Cambridge, MA
, pp.
23
79
.
7.
Viesca
,
R. C.
,
Templeton
,
E. L.
, and
Rice
,
J. R.
,
2008
, “
Off-Fault Plasticity and Earthquake Rupture Dynamics: 2. Effects of Fluid Saturation
,”
J. Geophys. Res.
,
113
, p.
B09307
.10.1029/2007JB005530
8.
Yang
,
Q.
,
Tham
,
L. G.
, and
Swoboda
,
G.
,
2005
, “
Normality Structures With Homogeneous Kinetic Rate Laws
,”
ASME J. Appl. Mech.
,
72
, pp.
322
329
.10.1115/1.1867991
9.
Edelen
,
D. G. B.
,
1972
, “
A Nonlinear Onsager Theory of Irreversibility
,”
Int. J. Eng. Sci.
,
10
, pp.
481
490
.10.1016/0020-7225(72)90091-2
10.
Edelen
,
D. G. B.
,
1973
, “
Asymptotic Stability, Onsager Fluxes and Reaction Kinetics
,”
Int. J. Eng. Sci.
,
11
, pp.
819
839
.10.1016/0020-7225(73)90032-3
11.
Ziegler
,
H.
,
1977
,
An Introduction to Thermomechanics
,
North-Holland
,
Amsterdam
.
12.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
,
2004
, “
On Thermomechanical Restrictions of Continua
,”
Proc. R. Soc. London, Ser. A
,
460
, pp.
631
651
.10.1098/rspa.2002.1111
13.
Fischer
,
F. D.
, and
Svoboda
,
J.
,
2007
, “
A Note on the Principle of Maximum Dissipation Rate
,”
ASME J. Appl. Mech.
,
74
, pp.
923
926
.10.1115/1.2722304
14.
Hackl
,
K.
, and
Fischer
,
F. D.
,
2008
, “
On the Relation Between the Principle of Maximum Dissipation and Inelastic Evolution Given by Dissipation Potentials
,”
Proc. R. Soc. London, Ser. A
,
464
, pp.
117
132
.10.1098/rspa.2007.0086
15.
Houlsby
,
G. T.
,
1981
, “
A Study of Plasticity Theories and Their Applicability to Soils
,” Ph.D. thesis, University of Cambridge, Cambridge, UK.
16.
Houlsby
,
G. T.
, and
Puzrin
,
A. M.
,
2000
, “
A Thermomechanical Framework for Constitutive Models for Rate-Independent Dissipative Materials
,”
Int. J. Plast.
,
16
, pp.
1017
1047
.10.1016/S0749-6419(99)00073-X
17.
Collins
,
I. F.
, and
Houlsby
,
G. T.
,
1997
, “
Application of Thermomechanical Principles to the Modelling of Geotechnical Materials
,”
Proc. R. Soc. London, Ser. A
,
453
, pp.
1975
2001
.10.1098/rspa.1997.0107
18.
Halphen
,
B.
, and
Nguyen
,
Q. S.
,
1975
, “
Sur les materiaux standards generalises
,”
J. Mec.
,
14
, pp.
254
259
.
19.
Germain
,
P.
,
Nguyen
,
Q. S.
, and
Suquet
,
P.
,
1983
, “
Continuum Thermodynamics
,”
ASME J. Appl. Mech.
,
50
, pp.
1010
1020
.10.1115/1.3167184
20.
Maugin
,
G. A.
,
1999
,
The Thermodynamics of Nonlinear Irreversible Behaviors
,
World Scientific
,
Singapore
.
21.
Nguyen
,
Q. S.
,
2000
,
Stability and Nonlinear Solid Mechanics
,
Wiley and Son
,
London
.
22.
Stolz
,
C.
,
2011
, “
Analysis of Stability and Bifurcation in Nonlinear Mechanics With Dissipation
,”
Entropy
,
13
, pp.
332
366
.10.3390/e13020332
23.
Yang
,
Q.
,
Liu
,
Y. R.
, and
Bao
,
J. Q.
,
2010
, “
Hamilton's Principle of Entropy Production for Creep and Relaxation Processes
,”
ASME J. Eng. Mater. Technol.
,
132
, p.
011018
.10.1115/1.4000302
24.
Yang
,
Q.
,
Guan
,
F. H.
, and
Liu
,
Y. R.
,
2010
, “
Hamilton's Principle for Green-Inelastic Bodies
,”
Mech. Res. Commun.
,
37
, pp.
696
699
.10.1016/j.mechrescom.2010.10.002
25.
Yang
,
Q.
,
Bao
,
J. Q.
, and
Liu
,
Y. R.
,
2009
, “
Asymptotic Stability in Constrained Configuration Space for Solids
,”
J. Non-Equil. Thermodyn.
,
34
(2), pp.
155
170
.10.1515/JNETDY.2009.009
26.
Yang
,
Q.
,
Chen
,
X.
, and
Zhou
,
W. Y.
,
2006
, “
Multiscale Thermodynamic Significance of the Scale Invariance Approach in Continuum Inelasticity
,”
ASME J. Eng. Mater. Technol.
,
128
, pp.
125
132
.10.1115/1.2172271
27.
Yang
,
Q.
,
Xue
,
L. J.
, and
Liu
,
Y. R.
,
2008
, “
Multiscale Thermodynamic Basis of Plastic Potential Theory
,”
ASME J. Eng. Mater. Technol.
,
130
, p.
044501
.10.1115/1.2969249
28.
Petryk
,
H.
,
2005
, “
Thermodynamic Conditions for Stability in Materials With Rate-Independent Dissipation
,”
Philos. Trans. R. Soc. London, Ser. A
,
363
, pp.
2479
2515
.10.1098/rsta.2005.1584
29.
Puglisi
,
G.
, and
Truskinovsky
,
L.
,
2005
, “
Thermodynamics of Rate-Independent Plasticity
,”
J. Mech. Phys. Solids
,
53
, pp.
655
679
.10.1016/j.jmps.2004.08.004
30.
Koiter
,
W. T.
,
1953
, “
Stress-Strain Relation, Uniqueness and Variational Theorems for Elastic-Plastic Materials With a Singular Yield Surface
,”
Q. Appl. Math.
,
11
, pp.
350
354
.
31.
Qin
,
Q.
, and
Bassani
,
J. L.
,
1992
, “
Non-Schmid Yield Behaviour in Single Crystals
,”
J. Mech. Phys. Solids
,
40
, pp.
813
833
.10.1016/0022-5096(92)90005-M
32.
Yang
,
Q.
,
Wang
,
R. K.
, and
Xue
,
L. J.
,
2007
, “
Normality Structures With Thermodynamic Equilibrium Points
,”
ASME J. Appl. Mech.
,
74
, pp.
965
971
.10.1115/1.2722772
33.
Edelen
,
D. G. B.
,
1993
,
The College Station Lectures on Thermodynamics
,
Texas A&M University
,
College Station, TX.
34.
Il'yushin
,
A. A.
,
1961
, “
On a Postulate of Plasticity
,”
J. Appl. Math. Mech.
,
25
, pp.
746
750
.10.1016/0021-8928(61)90044-2
35.
Goldstein
,
H.
,
Poole
,
C.
, and
Safko
J.
,
2002
,
Classical Mechanics
, 3rd ed.,
Addison-Wesley
,
San Francisco, CA
.
36.
Collins
,
I. F.
, and
Kelly
,
P. A.
,
2009
, “
Constrained, Thermomechanical, Rigid-Plastic Models of Granular Materials
,”
Int. J. Eng. Sci.
,
47
, pp.
1163
1169
.10.1016/j.ijengsci.2008.12.006
37.
Ju
,
J. W.
,
1989
, “
On Energy-Based Coupled Elastoplastic Damage Theories: Constitutive Modelling and Computational Aspects
,”
Int. J. Solids Struct.
,
25
, pp.
803
833
.10.1016/0020-7683(89)90015-2
You do not currently have access to this content.