Temperature-dependent crystal viscoplasticity models are ideal for modeling large-grained, directionally solidified Ni-base superalloys but are computationally expensive. This work explores the use of reduced-order models that are potentially more efficient with similar predictive capability of capturing temperature and orientation dependence. First, a transversely isotropic viscoplasticity model is calibrated to a directionally solidified Ni-base superalloy using the response predicted by a crystal viscoplasticity model. The unified macroscale model is capable of capturing isothermal and thermomechanical responses in addition to secondary creep behavior over the temperature range of 20–1050 °C. A second approach is an extreme reduced-order microstructure-sensitive constitutive model that uses an artificial neural network to provide a set of parameters that depend on orientation, temperature, and strain rate to give a first-order approximation of the material response using a simple constitutive model. This simple relationship is then used in a Neuber-type fatigue notch analysis to predict the local response.

References

1.
Österle
,
W.
,
Bettge
,
D.
,
Fedelich
,
B.
, and
Klingelhöffer
,
H.
,
2000
, “
Modelling the Orientation and Direction Dependence of the Critical Resolved Shear Stress of Nickel-Base Superalloy Single Crystals
,”
Acta Mater.
,
48
(
3
), pp.
689
700
.10.1016/S1359-6454(99)00404-8
2.
Jordan
,
E. H.
,
Shi
,
S. X.
, and
Walker
,
K. P.
,
1993
, “
The Viscoplastic Behavior of Hastelloy-X Single-Crystal
,”
Int. J. Plast.
,
9
(
1
), pp.
119
139
.10.1016/0749-6419(93)90016-J
3.
Sheh
,
M. Y.
, and
Stouffer
,
D. C.
,
1990
, “
A Crystallographic Model for the Tensile and Fatigue Response for Rene N4 at 982 °C
,”
ASME J. Appl. Mech.
,
57
, pp.
25
31
.10.1115/1.2888319
4.
Meric
,
L.
,
Poubanne
,
P.
, and
Cailletaud
,
G.
,
1991
, “
Single Crystal Modeling for Structural Calculations: Part 1—Model Presentation
,”
ASME J. Eng. Mater. Technol.
,
113
(
1
), pp.
162
170
.10.1115/1.2903374
5.
Meric
,
L.
, and
Cailletaud
,
G.
,
1991
, “
Single Crystal Modeling for Structural Calculations: Part 2—Finite Element Implementation
,”
ASME J. Eng. Mater. Technol.
,
113
(
1
), pp.
171
182
.10.1115/1.2903375
6.
Shenoy
,
M. M.
,
Gordon
,
A. P.
,
McDowell
,
D. L.
, and
Neu
,
R. W.
,
2005
, “
Thermomechanical Fatigue Behavior of a Directionally Solidified Ni-Base Superalloy
,”
ASME J. Eng. Mater. Technol.
,
127
, pp.
325
336
.10.1115/1.1924560
7.
Staroselsky
,
A.
, and
Cassenti
,
B. N.
,
2011
, “
Creep, Plasticity, and Fatigue of Single Crystal Superalloy
,”
Int. J. Solids Struct.
,
48
, pp.
2060
2075
.10.1016/j.ijsolstr.2011.03.011
8.
Kirka
,
M. M.
,
Smith
,
D. J.
, and
Neu.
,
R. W.
,
2014
, “
Efficient Methodologies for Determining Temperature-Dependent Parameters of Crystal Viscoplasticity
,”
ASME J. Eng. Mater. Technol.
(submitted).
9.
Shenoy
,
M.
,
Tjiptowidjojo
,
Y.
, and
McDowell
,
D.
,
2008
, “
Microstructure-Sensitive Modeling of Polycrystalline IN 100
,”
Int. J. Plast.
,
24
(
10
), pp.
1694
1730
.10.1016/j.ijplas.2008.01.001
10.
McDowell
,
D. L.
,
2008
, “
Viscoplasticity of Heterogeneous Metallic Materials
,”
Mater. Sci. Eng. R
,
62
, pp.
67
123
.10.1016/j.mser.2008.04.003
11.
Kalidindi
,
S. R.
,
Duvvuru
,
H. K.
, and
Knezevic
,
M.
,
2006
, “
Spectral Calibration of Crystal Plasticity Models
,”
Acta Mater.
,
54
(
7
), pp.
1795
1804
.10.1016/j.actamat.2005.12.018
12.
Knezevic
,
M.
,
Al-Harbi
,
H. F.
, and
Kalidindi
,
S. R.
,
2009
, “
Crystal Plasticity Simulations Using Discrete Fourier Transforms
,”
Acta Mater.
,
57
, pp.
1777
1784
.10.1016/j.actamat.2008.12.017
13.
Knezevic
,
M.
,
Kalidindi
,
S. R.
, and
Fullwood
,
D.
,
2008
, “
Computationally Efficient Database and Spectral Interpolation for Fully Plastic Taylor-Type Crystal Plasticity Calculations of Face-Centered Cubic Polycrystals
,”
Int. J. Plast.
,
24
(
7
), pp.
1264
1276
.10.1016/j.ijplas.2007.12.002
14.
Shenoy
,
M. M.
,
McDowell
,
D. L.
, and
Neu
,
R. W.
,
2006
, “
Transversely Isotropic Viscoplasticity Model for a Directionally Solidified Ni-Base Superalloy
,”
Int. J. Plast.
,
22
(
12
), pp.
2301
2326
.10.1016/j.ijplas.2006.03.003
15.
Yagawa
,
G.
, and
Okuda
,
H.
,
1996
, “
Neural Networks in Computational Mechanics
,”
Arch. Comput. Methods Eng.
,
3
, pp.
435
512
.10.1007/BF02818935
16.
Jung
,
S.
, and
Ghaboussi
,
J.
,
2006
, “
Neural Network Constitutive Model for Rate-Dependent Materials
,”
Comput. Struct.
,
84
(
15–16
), pp.
955
963
.10.1016/j.compstruc.2006.02.015
17.
Liang
,
G.
, and
Chandrashekhara
,
K.
,
2008
, “
Neural Network Based Constitutive Model for Elastomeric Foams
,”
Eng. Struct.
,
30
(
7
), pp.
2002
2011
.10.1016/j.engstruct.2007.12.021
18.
Al-Haik
,
M. S.
,
Garmestani
,
H.
, and
Navon
,
I. M.
,
2003
, “
Truncated-Newton Training Algorithm for Neurocomputational Viscoplastic Model
,”
Comput. Methods Appl. Mech. Eng.
,
192
, pp.
2249
2267
.10.1016/S0045-7825(03)00261-5
19.
Al-Haik
,
M. S.
,
Garmestani
,
H.
, and
Savran
,
A.
,
2004
, “
Explicit and Implicit Viscoplastic Models for Polymeric Composite
,”
Int. J. Plast.
,
20
, pp.
1875
1907
.10.1016/j.ijplas.2003.11.017
20.
Ghajar
,
R.
,
Naserifar
,
N.
,
Sadati
,
H.
, and
Alizadeh
K, J.
,
2011
, “
A Neural Network Approach for Predicting Steel Properties Characterizing Cyclic Ramberg-Osgood Equation
,”
Fatigue Fract. Eng. Mater. Struct.
,
34
(
7
), pp.
534
544
.10.1111/j.1460-2695.2010.01545.x
21.
Gupta
,
V. K.
,
Kwatra
,
N.
, and
Ray
,
S.
,
2007
, “
Artificial Neural Network Modeling of Creep Behavior in a Rotating Composite Disc
,”
Eng. Comput.
,
24
(
2
), pp.
151
164
.10.1108/02644400710729545
22.
Chaboche
,
J. L.
,
1989
, “
Constitutive Equations for Cyclic Plasticity and Cyclic Viscoplasticity
,”
Int. J. Plast.
,
5
, pp.
247
302
.10.1016/0749-6419(89)90015-6
23.
abaqus v6.11-1, 2011, Dassault Systemes, Providence, RI.
24.
Erickson
,
G. L.
, and
Harris
,
K.
,
1994
,
DS and SX Superalloys for Industrial Gas Turbines
,
Kluwer Academic Publisher's Group
,
Liege, Belgium
.
25.
Huber
,
N.
, and
Tsakmakis
,
C.
,
2001
, “
A Neural Network Tool for Identifying the Material Parameters of a Finite Deformation Viscoplasticity Model With Static Recovery
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
35
), pp.
353
384
.10.1016/S0045-7825(01)00278-X
26.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1989
, “
Multilayer Feedforward Networks are Universal Approximators
,”
Neural Netw.
,
2
(
5
), pp.
359
366
.10.1016/0893-6080(89)90020-8
27.
Sumpter
,
B. G.
, and
Noid
,
D. W.
,
1992
, “
Potential Energy Surfaces for Macromolecules—A Neural Network Technique
,”
Chem. Phys. Lett.
,
192
(
5–6
), pp.
455
462
.10.1016/0009-2614(92)85498-Y
28.
Ramberg
,
W.
, and
Osgood
,
W. R.
,
1943
, “
Description of Stress Strain Curves by Three Parameters
,”
National Advisory Committee for Aeronautics (NACA), Technical Note No. 902
.
29.
Bannantine
,
J. A.
,
Comer
,
J. J.
, and
Handrock
,
J. L.
,
1990
,
Fundamentals of Metal Fatigue Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
30.
matlab, v. R2010b, 2010, MathWorks, Natick, MA.
31.
Dowling
,
N. E.
,
1993
,
Mechanical Behavior of Materials
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
32.
Zhang
,
G. P.
,
2007
, “
Avoiding Pitfalls in Neural Network Research
,”
IEEE Trans. Syst., Man, Cybern., Part C: Appl. Rev.
,
37
(
1
), pp.
3
16
.10.1109/TSMCC.2006.876059
33.
Mackay
,
D. J. C.
,
1992
, “
Bayesian Interpolation
,”
Neural Comput.
,
4
(
3
), pp.
415
447
.10.1162/neco.1992.4.3.415
34.
Klesnil
,
M.
, and
Lukáš
,
P.
,
1980
,
Fatigue of Metallic Materials
,
Elsevier Scientific
,
Amsterdam
.
35.
Kupkovits
,
R.
, and
Neu
,
R.
, “
Thermomechanical Fatigue of a Directionally Solidified Ni-Base Superalloy: Smooth and Cylindrically Notched Specimens
,”
Int. J. Fatigue
,
32
(
8
), pp.
1330
1342
.10.1016/j.ijfatigue.2010.02.002
36.
Fernandez-Zelaia
,
P.
, and
Neu
,
R. W.
,
2014
, “
Influence of Notch Severity on Thermomechanical Fatigue Life of a Directionally Solidified Ni-Base Superalloy
,”
Fatigue Fract. Mater. Struct.
, in press.
37.
Ferreira
,
P.
,
Pinho-da-Cruz
,
J.
, and
Teixeira-Dias
,
F.
,
2006
, “
Finite Element and Local Strain Approach Stress-Strain Predictions in Notched AlCu4.5Mn Specimens (Portuguese)
,”
Iberoam. J. Eng. Mech.
,
10
(
1
), pp.
93
–110.
38.
Hong
,
N.
, and
Shaobo
,
L.
,
1997
, “
Biaxial Stress Fatigue Life Prediction by the Local Strain Method
,”
Int. J. Fatigue
,
19
(
6
), pp.
517
522
.10.1016/S0142-1123(95)00085-2
39.
Dowling
,
N.
,
Brose
,
W.
, and
Wilson
,
W.
,
1977
, “
Notched Member Fatigue Life Predictions by the Local Strain Approach
,”
Adv. Eng. Fatigue Under Complex Loading
,
6
, pp.
55
84
.
You do not currently have access to this content.