This paper evaluates the elastic stability and vibration characteristics of circular plates made from auxetic materials. By solving the general solutions for buckling and vibration of circular plates under various boundary conditions, the critical buckling load factors and fundamental frequencies of circular plates, within the scope of the first axisymmetric modes, were obtained for the entire range of Poisson's ratio for isotropic solids, i.e., from −1 to 0.5. Results for elastic stability reveal that as the Poisson's ratio of the plate becomes more negative, the critical bucking load gradually reduces. In the case of vibration, the decrease in Poisson's ratio not only decreases the fundamental frequency, but the decrease becomes very rapid as the Poisson's ratio approaches its lower limit. For both buckling and vibration, the plate's Poisson's ratio has no effect if the edge is fully clamped. The results obtained herein suggest that auxetic materials can be employed for attaining static and dynamic properties which are not common in plates made from conventional materials. Based on the exact results, empirical models were generated for design purposes so that both the critical buckling load factors and the frequency parameters can be conveniently obtained without calculating the Bessel functions.

References

1.
Popereka
,
M. Y. A.
, and
Balagurov
,
V. G.
,
1969
, “
Ferromagnetic Films Having a Negative Poisson Ratio
,”
Fizika Tverdogo Tela
,
11
(
12
), pp.
3507
3513
.
2.
Milstein
,
F.
, and
Huang
,
K.
,
1979
, “
Existence of a Negative Poisson Ratio in FCC Crystals
,”
Phys. Rev. B
,
19
(
4
), pp.
2030
2033
.10.1103/PhysRevB.19.2030
3.
Wojciechowski
,
K. W.
,
1989
, “
Two-Dimensional Isotropic System With a Negative Poisson Ratio
,”
Phys. Lett. A
,
137
(
1&2
), pp.
60
64
.10.1016/0375-9601(89)90971-7
4.
Wojciechowski
,
K. W.
, and
Branka
,
A. C.
,
1989
, “
Negative Poisson's Ratio in Isotropic Solids
,”
Phys. Rev. A
,
40
(
12
), pp.
7222
7225
.10.1103/PhysRevA.40.7222
5.
Lakes
,
R.
,
1987
, “
Foam Structures With Negative Poisson's Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
.10.1126/science.235.4792.1038
6.
Lakes
,
R.
,
1987
, “
Negative Poisson's Ratio Materials
,”
Science
,
238
(
4826
), pp.
551
.10.1126/science.238.4826.551-a
7.
Caddock
B. D.
, and
Evans
,
K. E.
,
1989
, “
Microporous Materials With Negative Poisson's Ratios. I. Microstructure and Mechanical Properties
,”
J. Phys. D: Appl. Phys.
,
22
(
12
), pp.
1877
1882
.10.1088/0022-3727/22/12/012
8.
Evans
,
K. E.
, and
Caddock
,
B. D.
,
1989
, “
Microporous Materials With Negative Poisson's Ratios. II. Mechanisms and Interpretation
,”
J. Phys. D: Appl. Phys.
,
22
(
12
), pp.
1883
1887
.10.1088/0022-3727/22/12/013
9.
Wang
,
Y. C.
, and
Lakes
,
R. S.
,
2002
, “
Analytical Parametric Analysis of the Contact Problem of Human Buttocks and Negative Poisson's Ratio Foam Cushions
,”
Int. J. Solids Struct.
,
39
(
18
), pp.
4825
4838
.10.1016/S0020-7683(02)00379-7
10.
Dolla
,
W. J. S.
,
Fricke
,
B. A.
, and
Becker
,
B. R.
,
2007
, “
Structural and Drug Diffusion Models of Conventional and Auxetic Drug-Eluting Stents
,”
ASME J. Med. Dev.
,
1
(
1
), pp.
47
55
.10.1115/1.2355691
11.
Tan
,
T. W.
,
Douglas
,
G. R.
,
Bond
,
T.
, and
Phani
,
A. S.
,
2011
, “
Compliance and Longitudinal Strain of Cardiovascular Stents: Influence of Cell Geometry
,”
ASME J. Med. Dev.
,
5
(
4
), p.
041002
.10.1115/1.4005226
12.
Ieşan
,
D.
,
2011
, “
Pressure Vessel Problem for Chiral Elastic Tubes
,”
Int. J. Eng. Sci.
,
49
(
5
), pp.
411
419
.10.1016/j.ijengsci.2011.01.003
13.
Abramovitch
,
H.
,
Burgard
,
M.
,
Edery-Azulay
,
L.
,
Evans
,
K. E.
,
Hoffmeister
,
M.
,
Miller
,
W.
,
Scarpa
,
F.
,
Smith
,
C. W.
, and
Tee
,
K. F.
,
2010
, “
Smart Tetrachiral and Hexachiral Honeycomb: Sensing and Impact Detection
,”
Compos. Sci. Technol.
,
70
(
7
), pp.
1072
1079
.10.1016/j.compscitech.2009.07.017
14.
Bornengo
,
D.
,
Scarpa
,
F.
, and
Remillat
,
C.
,
2005
, “
Evaluation of Hexagonal Chiral Structure for Morphine Airfoil Concept
,”
IMechE J. Aerosp. Eng.
219
(
3
), pp.
185
192
.10.1243/095441005X30216
15.
Heo
,
H.
,
Ju
J.
, and
Kim
,
D. M.
,
2013
, “
Compliant Cellular Structures: Application to a Passive Morphing Airfoil
,”
Compos. Struct.
,
106
, pp.
560
569
.10.1016/j.compstruct.2013.07.013
16.
Conn
,
A. T.
, and
Rossiter
,
J.
,
2012
, “
Smart Radially Folding Structures
,”
IEEE/ASME Trans. Mechatron.
17
(
5
), pp.
968
975
.10.1109/TMECH.2011.2153867
17.
Grima
,
J. N.
,
Caruana-Gauci
,
R.
,
Dudek
,
M. R.
,
Wojciechowski
,
K. W.
, and
Gatt
,
R.
,
2013
, “
Smart Metamaterials With Tunable Auxetic and Other Properties
,”
Smart Mater. Struct.
,
22
(
8
), p.
084016
.10.1088/0964-1726/22/8/084016
18.
Lira
,
C.
,
Scarpa
,
F.
, and
Rajasekaran
,
R.
,
2011
, “
A Gradient Cellular Core for Aeroengine Fan Blades Based on Auxetic Configurations
J. Intell. Mater. Syst. Struct.
,
22
(
9
), pp.
907
917
.10.1177/1045389X11414226
19.
Ma
,
Y.
,
Scarpa
,
F.
,
Zhang
,
D.
,
Zhu
,
B.
,
Chen
,
L.
, and
Hong
,
J.
,
2013
, “
A Nonlinear Auxetic Structural Vibration Damper With Metal Rubber Particles
,”
Smart Mater. Structures
,
22
(
8
), p.
084012
.10.1088/0964-1726/22/8/084012
20.
Lakes
,
R. S.
,
1991
, “
Experimental Micro Mechanics Methods for Conventional and Negative Poisson's Ratio Cellular Solids as Cosserat Continua
,”
ASME J. Eng. Mater. Technol.
,
113
(
1
), pp.
148
155
.10.1115/1.2903371
21.
Lakes
,
R. S.
,
1992
, “
Saint-Venant End Effects for Materials With Negative Poisson's Ratios
,”
ASME J. Appl. Mech.
,
59
(
4
), pp.
744
746
.10.1115/1.2894037
22.
Lakes
,
R. S.
,
1993
, “
Design Considerations for Materials With Negative Poisson's Ratios
,”
ASME J. Mech. Des.
,
115
(
4
), pp.
696
700
.10.1115/1.2919256
23.
Phan-Thien
,
N.
, and
Karihaloo
,
B. L.
,
1994
, “
Materials With Negative Poisson's Ratio: A Qualitative Microstructural Model
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
1001
1004
.10.1115/1.2901547
24.
Ting
,
T. C. T.
, and
Barnett
,
D. M.
,
2005
, “
Negative Poisson's Ratios in Anisotropic Linear Elastic Media
,”
ASME J. Appl. Mech.
,
72
(
6
), pp.
929
931
.10.1115/1.2042483
25.
Lim
,
T. C.
,
2010
, “
In-Plane Stiffness of Semi-Auxetic Laminates
,”
ASCE J. Eng. Mech.
,
136
(
9
), pp.
1176
1180
.10.1061/(ASCE)EM.1943-7889.0000167
26.
Lim
,
T. C.
,
2013
Optimal Poisson's Ratios for Laterally Loaded Rectangular Plates
,”
IMechE J. Mater.: Des. Appl.
,
227
(
2
), pp.
111
123
.10.1177/1464420712472634
27.
Lim
,
T. C.
,
2013
, “
Shear Deformation in Auxetic Plates
,”
Smart Mater. Struct.
,
22
(
8
), p.
084001
.10.1088/0964-1726/22/8/084001
28.
Kochmann
,
D. M.
, and
Venturini
,
G. N.
,
2013
, “
Homogenized Mechanical Properties of Auxetic Composite Materials in Finite-Strain Elasticity
,”
Smart Mater. Struct.
,
22
(
8
), p.
084004
.10.1088/0964-1726/22/8/084004
29.
Pozniak
,
A. A.
,
Smardzewski
,
J.
, and
Wojciechowski
,
K. W.
,
2013
, “
Computer Simulations of Auxetic Foams in Two Dimensions
,”
Smart Mater. Struct.
,
22
(
8
), p.
084009
.10.1088/0964-1726/22/8/084009
30.
Grima
,
J. N.
,
Caruana-Gauci
,
R.
,
Wojciechowski
,
K. W.
, and
Evans
,
K. E.
, “
Smart Hexagonal Truss Systems Exhibiting Negative Compressibility Through Constrained Angle Stretching
,”
Smart Mater. Struct.
,
22
(
8
), p.
084015
.10.1088/0964-1726/22/8/084015
31.
Grima
,
J. N.
,
Caruana-Gauci
,
R.
,
Dudek
,
M. R.
,
Wojciechowski
,
K. W.
, and
Gatt
,
R.
, “
Smart Metamaterials With Tunable Auxetic and Other Properties
,”
Smart Mater. Struct.
,
22
(
8
), p.
084016
.10.1088/0964-1726/22/8/084016
32.
Chen
,
C. P.
, and
Lakes
,
R. S.
,
1996
, “
Micromechanical Analysis of Dynamic Behavior of Conventional and Negative Poisson's Ratio Foams
,”
ASME J. Eng. Mater. Technol.
,
118
(
3
), pp.
285
288
.10.1115/1.2806807
33.
Lim
,
T. C.
,
2013
, “
Thermal Stresses in Thin Auxetic Plates
,”
J. Therm. Stress.
,
36
(
11
), pp.
1131
1140
.10.1080/01495739.2013.818896
34.
Spadoni
,
A.
,
Ruzzene
,
M.
, and
Scarpa
,
F.
,
2005
, “
Global and Local Linear Buckling Behavior of a Chiral Cellular Structure
,”
Phys. Status Solidi B
,
242
(
3
), pp.
695
709
.10.1002/pssb.200460387
35.
Scarpa
,
F.
,
Smith
,
C. W.
,
Ruzzene
,
M.
, and
Wadee
,
M. K.
,
2008
, “
Mechanical Properties of Auxetic Tubular Truss-Like Structures
,”
Phys. Status Solidi B
,
245
(
3
), pp.
584
590
.10.1002/pssb.200777715
36.
Karnessis
,
N.
, and
Burriesci
,
G.
,
2013
, “
Uniaxial and Buckling Mechanical Response of Auxetic Cellular Tubes
,”
Smart Mater. Struct.
,
22
(
8
), p.
084008
.10.1088/0964-1726/22/8/084008
37.
Tee
,
K. F.
,
Spadoni
,
A.
,
Scarpa
,
F.
, and
Ruzzene
,
M.
,
2010
, “
Wave Propagation in Auxetic Tetrachiral Honeycombs
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031007
.10.1115/1.4000785
38.
Kolat
,
P.
,
Maruszewski
,
B. M.
, and
Wojciechowski
,
K. W.
,
2010
, “
Solitary Waves in Auxetic Plates
,”
J. Non-Crystall. Solids
,
356
(
37–40
), pp.
2001
2009
.10.1016/j.jnoncrysol.2010.06.002
39.
Lim
,
T. C.
,
2013
, “
Stress Wave Transmission and Reflection Through Auxetic Solids
,”
Smart Mater. Struct.
,
22
(
8
), p.
084002
.10.1088/0964-1726/22/8/084002
40.
Maruszewski
,
B. T.
,
Drzewiecki
,
A.
, and
Starosta
,
R.
,
2013
, “
Thermoelastic Damping in an Auxetic Rectangular Plate With Thermal Relaxation—Free Vibrations
,”
Smart Mater. Struct.
,
22
(
8
), p.
084003
.10.1088/0964-1726/22/8/084003
41.
Bianchi
,
M.
, and
Scarpa
,
F.
,
2013
, “
Vibration Transmissibility and Damping Behaviour for Auxetic and Conventional Foams Under Linear and Nonlinear Regimes
,”
Smart Mater. Struct.
,
22
(
8
), p.
084010
.10.1088/0964-1726/22/8/084010
42.
Klepka
,
A.
,
Staszewski
,
W. J.
,
di Maio
,
D.
, and
Scarpa
,
F.
,
2013
, “
Impact Damage Detection in Composite Chiral Sandwich Panels Using Nonlinear Vibro-Acoustic Modulations
,”
Smart Mater. Struct.
,
22
(
8
), p.
084011
.10.1088/0964-1726/22/8/084011
43.
Ma
,
Y.
,
Scarpa
,
F.
,
Zhang
D.
,
Zhu
,
B.
,
Chen
,
L.
, and
Hon
g
,
J.
, “
A Nonlinear Auxetic Structural Vibration Damper With Metal Rubber Particles
,”
Smart Mater. Struct.
,
22
(
8
), p.
084012
.10.1088/0964-1726/22/8/084012
44.
Scarpa
,
F.
,
Ouisse
,
M.
,
Collet
,
M.
, and
Saito
,
K.
,
2013
, “
Kirigami Auxetic Pyramidal Core: Mechanical Properties and Wave Propagation Analysis in Damped Lattice
,”
ASME J. Vib. Acoust.
,
135
(
4
), p.
041001
.10.1115/1.4024433
45.
Lim
,
T. C.
,
Scarpa
,
F.
, and
Cheang
,
P.
,
2014
, “
Wave Motion in Auxetic Solids
,”
Phys. Status Solidi B
251(2), pp. 388–396.10.1002/pssb.201384238
46.
Leissa
,
A. W.
,
1969
, “
Vibration of Plates
,” National Aeronautics and Space Administration, Washington, DC, Report No. NASA SP-160.
47.
Reismann
,
H.
,
1952
, “
Bending and Buckling of an Elastically Restrained Circular Plate
,”
ASME J. Appl. Mech.
,
19
, pp.
167
172
.
48.
Kerr
,
A. D.
,
1962
, “
On the Stability of Circular Plates
,”
J. Aerosp. Sci.
,
29
(
4
), pp.
486
487
.10.2514/8.9514
49.
Reddy
,
J. N.
,
2007
,
Theory and Analysis of Elastic Plates and Shells
, 2nd ed.,
CRC Press
,
Boca Raton, FL
, Chap. 5.
50.
Lim
,
T. C.
,
2013
, “
Circular Auxetic Plates
,”
J. Mech.
,
29
(
1
), pp.
121
133
.10.1017/jmech.2012.113
51.
Rao
,
S. S.
,
2007
,
Vibration of Continuous Systems
,
Wiley
,
Hoboken, NJ
, Chap. 14.
52.
Chakraverty
,
S.
,
2008
,
Vibration of Plates
,
CRC Press
,
Boca Raton, FL
, Chap. 4.
53.
Wang
,
C. Y.
, and
Wang
,
C. M.
,
2013
,
Structural Vibration: Exact Solutions for Strings, Membranes, Beams, and Plates
,
CRC Press
,
Boca Raton, FL
, Chap. 5.
54.
Liew
,
K. M.
,
Wang
,
C. M.
,
Xiang
,
Y.
, and
Kitipornchai
,
S.
,
1998
,
Vibration of Mindlin Plates
,
Elsevier
,
Oxford, UK
, Chap. 3.
55.
Carrington
,
H.
,
1925
, “
The Frequencies of Vibration of Flat Circular Plates Fixed at the Circumference
,”
Philos. Mag.
,
50
(
6
), pp.
1261
1264
.10.1080/14786442508634850
56.
Prescott
,
T.
,
1961
,
Applied Elasticity
,
Dover Publications,
New York.
57.
Gontkevich
,
V. S.
,
1964
,
Natural Vibration of Shells
, A. P. Filippov, ed.,
Nauk Dumka
, Kiev, Ukraine.
58.
Bodine
,
R. Y.
,
1959
, “
The Fundamental Frequencies of a Thin Flat Circular Plate Simply Supported Along a Circle of Arbitrary Radius
,”
ASME J. Appl. Mech.
,
26
, pp.
666
668
.
59.
Airey
,
J.
,
1911
, “
The Vibrations of Circular Plates and Their Relation to Bessel Functions
,”
Proc. Phys. Soc. (London)
,
23
, pp.
225
232
.10.1088/1478-7814/23/1/322
60.
Colwell
,
R. C.
, and
Hardy
,
R. C.
,
1937
, “
The Frequencies and Nodal Systems of Circular Plates
,”
Philos. Mag. (Series 7)
,
24
(
165
), pp.
1041
1055
.
You do not currently have access to this content.