The uniaxial compressive mechanical curves of nitrate ester plasticized polyether (NEPE) propellant under different temperatures and strain rates have been obtained with a universal testing machine and modified split Hopkinson pressure bar (SHPB). The experimental results show that the mechanical properties of NEPE propellant are both rate dependent and temperature dependent. With decreasing temperature or increasing strain rate, the modulus and rigidity obviously increase. Based on the previous models proposed by Yang and Pouriayevali, we propose a modified viscohyperelastic constitutive model which can describe the mechanical response over a large range of strain rates. Then we add a rate-dependent temperature item into the modified model to make a thermovisco-hyperelastic constitutive model. By comparing the experimental results with the model, we find that the thermovisco-hyperelastic constitutive model can correctly describe the uniaxial compressive mechanical properties of NEPE propellant at different temperatures and over a large range of strain rates from the static state to 4500 s−1.

References

1.
Guo
,
X.
,
Zhang
,
X. P.
, and
Zhang
,
W.
,
2007
, “
Effect of Tensile Rate on Mechanical Properties of NEPE Propellant
,”
J. Solid Rocket Technol
,
30
(
4
), pp.
321
327
.
2.
Li
,
S. N.
,
Liu
,
Y.
,
Tuo
,
X. L.
, and
Wang
,
X. G.
,
2008
, “
Mesoscale Dynamic Simulation on Phase Separation Between Plasticizer and Binder in NEPE Propellants
,”
Polymer
,
49
(
11
), pp.
2775
2780
.10.1016/j.polymer.2008.04.020
3.
Huang
,
Z. P.
,
Nie
,
H. Y.
,
Zhang
,
Y. Y.
,
Tan
,
L. M.
,
Yin
,
H. L.
, and
Ma
,
X. G.
,
2012
, “
Migration Kinetics and Mechanisms of Plasticizers, Stabilizers at Interfaces of NEPE Propellant/HTPB Liner/EDPM Insulation
,”
J. Hazard. Mater.
,
229–230
, pp.
251
257
.10.1016/j.jhazmat.2012.05.103
4.
Zhang
,
J. F.
,
Ju
,
Y. T.
,
Sun
,
C. X.
, and
Hu
,
S. Q.
,
2013
, “
Research of the Dynamic Mechanical Properties of NEPE Propellant
,”
J. Solid Rocket Technol.
,
36
(
3
), pp.
358
362
.
5.
Bergström
,
J. S.
, and
Boyce
,
M. C.
,
1998
, “
Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers
,”
J. Mech. Phys. Solids
,
46
(5), pp.
931
954
.10.1016/S0022-5096(97)00075-6
6.
Bergström
,
J. S.
, and
Boyce
,
M. C.
,
2001
, “
Constitutive Modeling of the Time-Dependent and Cyclic Loading of Elastomers and Application to Soft Biological Tissues
,”
Mech. Mater.
,
33
(9), pp.
523
530
.10.1016/S0167-6636(01)00070-9
7.
Shim
, V
. P. W.
,
Yang
,
L. M.
,
Lim
,
C. T.
, and
Law
,
P. H.
,
2004
, “
A Visco-Hyperelastic Constitutive Model to Characterize Both Tensile and Compressive Behavior of Rubber
,”
J. Appl. Polym. Sci.
,
92
(1), pp.
523
531
.10.1002/app.20029
8.
Yang
,
L. M.
,
Shim
, V
. P. W.
, and
Lim
,
C. T.
,
2000
, “
A Visco-Hyperelastic Approach to Modelling the Constitutive Behaviour of Rubber
,”
Int. J. Impact Eng.
,
24
(
6–7
), pp.
545
560
.10.1016/S0734-743X(99)00044-5
9.
Pouriayevali
,
H.
,
Guo
,
Y. B.
, and
Shim
,
V. P. W.
,
2011
, “
A Visco-Hyperelastic Constitutive Description of Elastomer Behaviour at High Strain Rates
,”
Proc. Eng.
,
10
, pp.
2274
2279
.10.1016/j.proeng.2011.04.376
10.
Pouriayevali
,
H.
,
Guo
,
Y. B.
, and
Shim
,
V. P. W.
,
2012
, “
A Constitutive Description of Elastomer Behaviour at High Strain Rates—A Strain-Dependent Relaxation Time Approach
,”
Int. J. Impact Eng.
,
47
, pp.
71
78
.10.1016/j.ijimpeng.2012.04.001
11.
Song
,
B.
, and
Chen
,
W. N.
,
2003
, “
One-Dimensional Dynamic Compressive Behavior of EPDM Rubber
,”
J. Eng. Mater. Technol.
,
125
(
3
), pp.
294
301
.10.1115/1.1584492
12.
Song
,
B.
,
Chen
,
W. N.
, and
Cheng
,
M.
,
2004
, “
Novel Model for Uniaxial Strain-Rate-Dependent Stress–Strain Behavior of Ethylene–Propylene–Diene Monomer Rubber in Compression or Tension
,”
J. Appl. Polym. Sci.
,
92
(
3
), pp.
1553
1558
.10.1002/app.20095
13.
Huang
,
C. Y.
,
Wang
, V
. M.
,
Flatow
,
E. L.
, and
Mow
, V
. C.
,
2009
, “
Temperature-Dependent Viscoelastic Properties of the Human Supraspinatus Tendon
,”
J. Biomech.
,
42
(
4
), pp.
546
549
.10.1016/j.jbiomech.2008.11.013
14.
Magnenet
, V
.
,
Rahouadj
,
R.
,
Ganghoffer
,
J. F.
, and
Cunat
,
C.
,
2009
, “
Continuous Symmetry Analysis of a Dissipative Constitutive Law: Application to the Time-Temperature Superposition
,”
Eur. J. Mech., A
,
28
(
4
), pp.
744
751
.10.1016/j.euromechsol.2009.02.002
15.
Xu
,
J. S.
,
Ju
,
Y. T.
,
Han
,
B.
,
Zhou
,
C. S.
, and
Zheng
,
J.
,
2012
, “
Research on Relaxation Modulus of Viscoelastic Materials Under Unsteady Temperature States Based on TTSP
,”
Mech. Time-Depend. Mater.
,
17
(4), pp.
543
556
.10.1007/s11043-012-9203-z
16.
Luo
,
W. B.
,
Wang
,
C. H.
,
Hu
,
X. L.
, and
Yang
,
T. Q.
,
2012
, “
Long-Term Creep Assessment of Viscoelastic Polymer by Time-Temperature-Stress Superposition
,”
Acta Mech. Solida Sin.
,
25
(
6
), pp.
571
578
.10.1016/S0894-9166(12)60052-4
17.
Zhu
,
Z. X.
,
Xu
,
D. B.
, and
Wang
,
L. L.
,
1988
, “
Thermoviscoelastic Constitutive Equation and Time-Temperature Equivalence of Resin at High Strain Rates
,”
J. Ningbo Univ.
,
1
(
1
), pp.
58
68
.
18.
Zhu
,
G. R.
,
Zhu
,
X. X.
, and
Huang
,
X. S.
,
1993
, “
The Rate-Temperature Equivalence of Viscoelastic Behavior for Glassy Polymer PMMA
,”
Acta. Mech. Sin.
,
25
(
2
), pp.
226
231
.
19.
Samantaray
,
D.
,
Mandal
,
S.
,
Borah
,
U.
,
Bhaduri
,
A. K.
, and
Sivaprasad
,
P. V.
,
2009
, “
A Thermo-Viscoplastic Constitutive Model to Predict Elevated-Temperature Flow Behaviour in a Titanium-Modified Austenitic Stainless Steel
,”
Mater. Sci. Eng., A
,
526
(
1–2
), pp.
1
6
.10.1016/j.msea.2009.08.009
20.
Hou
,
Q. Y.
, and
Wang
,
J. T.
,
2012
, “
A Modified Johnson–Cook Constitutive Model for Mg–Gd–Y Alloy Extended to a Wide Range of Temperatures
,”
Comput. Mater. Sci.
,
50
(
1
), pp.
147
152
.10.1016/j.commatsci.2010.07.018
21.
Xu
,
Z.
, and
Huang
,
F.
,
2012
, “
Plastic Behavior and Constitutive Modeling of Armor Steel Over Wide Temperature and Strain Rate Ranges
,”
Acta Mech. Solida Sin.
,
25
(
6
), pp.
598
608
.10.1016/S0894-9166(12)60055-X
22.
Samantaray
,
D.
,
Mandal
,
S.
, and
Bhaduri
,
A. K.
,
2009
, “
A Comparative Study on Johnson Cook, Modified Zerilli–Armstrong and Arrhenius-Type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr–1Mo Steel
,”
Comput. Mater. Sci.
,
47
(
2
), pp.
568
576
.10.1016/j.commatsci.2009.09.025
23.
Li
,
J.
,
Li
,
F.
,
Cai
,
J.
,
Wang
,
R. T.
,
Yuan
,
Z. W.
, and
Ji
,
G. L.
,
2013
, “
Comparative Investigation on the Modified Zerilli–Armstrong Model and Arrhenius-Type Model to Predict the Elevated-Temperature Flow Behaviour of 7050 Aluminium Alloy
,”
Comput. Mater. Sci.
,
71
, pp.
56
65
.10.1016/j.commatsci.2013.01.010
24.
Kolsky
,
H
.,
1949
, “
An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading
,”
Proc. Phys. Soc. Ser.
, B,
62
(
11
), pp.
676
700
.10.1088/0370-1301/62/11/302
25.
Forrestal
,
M. J.
,
Wright
,
T. W.
, and
Chen
,
W.
,
2007
, “
The Effect of Radial Inertia on Brittle Samples During the Split Hopkinson Pressure Bar Test
,”
Int. J. Impact Eng.
,
34
(
3
), pp.
405
411
.10.1016/j.ijimpeng.2005.12.001
26.
Dioh
,
N. N.
,
Leevers
,
P. S.
, and
Williams
,
J. G.
,
1993
, “
Thickness Effects in Split Hopkinson Pressure Bar Tests
,”
Polymer
,
34
(20), pp.
4230
4234
.10.1016/0032-3861(93)90181-9
27.
Gray
,
G. T.
, and
Blumenthal
,
W. R.
,
2000
, “
Split-Hopkinson Pressure Bar of Soft Materials
,”
ASM Handbook (Mechanical and Test Evaluation, Vol. 8)
, ASM International, Detroit, MI, pp.
488
496
.
28.
Chen
,
W. N.
,
Lu
,
F.
,
Frew
,
D. J.
, and
Forrestal
,
M. J.
,
2002
, “
Dynamic Compression Testing of Soft Materials
,”
ASME J. Appl. Mech.
,
69
(
3
), pp.
214
223
.10.1115/1.1464871
29.
Lim
,
J.
,
Hong
,
J.
,
Chen
,
W. N.
, and
Weerasooriya
,
T.
,
2011
, “
Mechanical Response of Pig Skin Under Dynamic Tensile Loading
,”
Int. J. Impact Eng.
,
38
(
2–3
), pp.
130
135
.10.1016/j.ijimpeng.2010.09.003
30.
Song
,
B.
,
Ge
,
Y.
,
Chen
,
W. W.
, and
Weerasooriya
,
T.
,
2007
, “
Radial Inertia Effects in Kolsky Bar Testing of Extra-Soft Specimens
,”
Exp. Mech.
,
47
(
5
), pp.
659
670
.10.1007/s11340-006-9017-5
31.
Song
,
B.
,
Chen
,
W. N.
,
Yanagita
,
T.
, and
Frew
,
D. J.
,
2005
, “
Temperature Effects on Dynamic Compressive Behavior of an Epoxy Syntactic Foam
,”
Compos. Struct.
,
67
(
3
), pp.
289
298
.10.1016/j.compstruct.2004.07.012
32.
Hasegawa
,
N.
,
Okamoto
,
H.
,
Kato
,
M.
, and
Usuki
,
A.
,
2000
, “
Preparation and Mechanical Properties of Polypropylene–Clay Hybrids Based on Modified Polypropylene and Organophilic Clay
,”
J. Appl. Polym. Sci.
,
78
(
11
), pp.
1918
1922
.10.1002/1097-4628(20001209)78:11<1918::AID-APP100>3.0.CO;2-H
33.
Bernstein
,
B.
,
Kearsley
,
A.
, and
Zapas
,
L. J.
,
1965
, “
A Study of Stress Relaxation With Finite Strain
,”
Rubber Chem. Technol.
,
38
(1), pp.
76
89
.10.5254/1.3535640
34.
Wineman
,
A
.,
2009
, “
Nonlinear Viscoelastic Solids—A Review
,”
Math. Mech. Solids
,
14
(
3
), pp.
300
366
.10.1177/1081286509103660
You do not currently have access to this content.