Anisotropic mechanical behavior is an inherent characteristic of parts produced using additive manufacturing (AM) techniques in which parts are built layer by layer. It is expected that in-plane and out-of-plane properties be different in these parts. E-beam fabrication is not an exception to this. It is, however, desirable to keep this degree of anisotropy to a minimum level and be able to produce parts with comparable mechanical strength in both in-plane and out-of-plane directions. In this manuscript, this degree of anisotropy is investigated for Ti6Al4V parts produced using this technique through tensile testing of parts built in different orientations. Mechanical characteristics such as Young's modulus, yield strength (YS), ultimate tensile strength (UTS), and ductility are evaluated. The strain rate effect on mechanical behavior, namely, strength and ductility, is also investigated by testing the material at a range of strain rates from 10−2 to 10−4 s−1. Local mechanical properties were extracted using nanoindentation technique and compared against global values (average values obtained by tensile tests). Although the properties obtained in this experiment were comparable with literature findings, test results showed that in-plane properties, elastic modulus, YS, and UTS are significantly higher than out-of-plane properties. This could be an indication of defects in between layers or imperfect bonding of the layers. Strong positive strain rate sensitivity was observed in out-of-plane direction. The strain rate sensitivity evaluation did not show strain rate dependency for in-plane directions. Local mechanical properties obtained through nanoindentation confirmed the findings of tensile test and also showed variation of properties caused by geometry.

References

1.
Murr
,
L.
,
Esquivel
,
E.
,
Quinones
,
S.
,
Gaytan
,
S.
,
Lopez
,
M.
,
Martinez
,
E.
,
Medina
,
F.
,
Hernandez
,
D.
,
Martinez
,
E.
,
Martinez
,
J.
,
Stafford
,
S.
,
Brown
,
D.
,
Hoppe
,
T.
,
Meyers
,
W.
,
Lindhe
,
U.
, and
Wicker
,
R.
,
2009
, “
Microstructures and Mechanical Properties of Electron Beam-Rapid Manufactured Ti-6Al-4V Biomedical Prototypes Compared to Wrought Ti-6Al-4V
,”
Mater. Charact.
,
60
(
2
), pp.
96
105
.10.1016/j.matchar.2008.07.006
2.
Murr
,
L.
,
Gaytan
,
S.
,
Medina
,
F.
,
Martinez
,
E.
,
Hernandez
,
D.
,
Martinez
,
L.
,
Lopez
,
M.
,
Wicker
,
R.
, and
Collins
,
S.
,
2009
, “
Effect of Build Parameters and Build Geometries on Residual Microstructures and Mechanical Properties of Ti-6Al-4V Components Built by Electron Beam Melting (EBM)
,”
20th Solid Freeform Fabrication Symposium
, Austin, TX, August 3-5, pp.
374
397
.
3.
Murr
,
L.
,
Quinones
,
S.
,
Gaytan
,
S.
,
Lopez
,
M.
,
Rodela
,
A.
,
Martinez
,
E.
,
Hernandez
,
D.
,
Martinez
,
E.
,
Medina
,
F.
, and
Wicker
,
R.
,
2009
, “
Microstructure and Mechanical Behavior of Ti-6Al-4V Produced by Rapid-Layer Manufacturing, for Biomedical Applications
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
1
), pp.
20
32
.10.1016/j.jmbbm.2008.05.004
4.
Gaytan
,
S.
,
Murr
,
L.
,
Medina
,
F.
,
Martinez
,
E.
,
Lopez
,
M.
, and
Wicker
,
R.
,
2009
, “
Advanced Metal Powder Based Manufacturing of Complex Components by Electron Beam Melting
,”
Mater. Technol.
,
24
(
3
), pp.
180
190
.10.1179/106678509X12475882446133
5.
Murr
,
L.
,
Martinez
,
E.
,
Gaytan
,
S.
,
Ramirez
,
D.
,
Machado
,
B.
,
Shindo
,
P.
,
Martinez
,
J.
,
Medina
,
F.
,
Wooten
,
J.
,
Ciscel
,
D.
,
Ackelid
,
U.
, and
Wicker
,
R.
,
2011
, “
Microstructural Architecture, Microstructures, and Mechanical Properties for a Nickel-Base Superalloy Fabricated by Electron Beam Melting
,”
Metall. Mater. Trans. A
,
42
(
11
), pp.
3491
3508
.10.1007/s11661-011-0748-2
6.
Christensen
,
A.
,
Kircher
,
R.
, and
Lippencott
,
A.
,
2008
, “
Qualification of Electron Beam Melted (EBM) Ti6Al4V-ELI for Orthopedic Applications
,” Materials & Processes for Medical Devices Conference (MDM IV), Palm Desert, CA, September 23-25, pp. 48-53.
7.
Harrysson
,
O.
,
Deaton
,
B.
,
Bardin
,
J.
,
West
,
H.
,
Cansizoglu
,
O.
,
Cormier
,
D.
, and
Marcellin-Little
,
D.
,
2005
, “
Evaluation of Titanium Implant Components Directly Fabricated Through Electron Beam Melting Technology
,”
Materials and Processes for Medical Devices Conference
(MDM III), Boston, MA, November 14-16, pp.
15
20
.
8.
Svensson
,
M.
, and
Ackelid
,
U.
,
2010
,
Titanium Alloys Manufactured With Electron Beam Melting Mechanical and Chemical Properties
,” Materials and Processes for Medical Devices Conference (MDM V), Minneapolis, MN, August 10-12, pp.
189
194
.
9.
Arcam, 2008, “Ti6Al4V Titanium Alloy,” Arcam AB, Mölndal, Sweden, http://www.arcam.com/wp-content/uploads/Arcam-Ti6Al4V-Titanium-Alloy.pdf
10.
Larsson
,
M.
,
Lindhe
,
U.
, and
Harrysson
,
O.
,
2003
, “
Rapid Manufacturing With Electron Beam Melting (EBM)—A Manufacturing Revolution
?,”
Solid Freeform Fabrication Symposium
, Austin, TX, August 4-6, pp.
433
438
.
11.
Koike
,
M.
, and
Okabe
,
T.
,
2010
, “
Titanium Fabricated by Electron Beam Melting for Dental Applications
,”
J. Jpn. Soc. Dent. Mater. Devices
,
28
(
5
), p. 208.
12.
Schroeder
,
J.
,
2006
, “
Advanced Manufacturing Technology Changes the Way Implants are Designed and Produced
,”
BoneZone
5
(
3
), pp.
17
20
.
13.
Thundal
,
S.
,
2006
, “
Rapid Manufacturing of Orthopedic Implants
,”
Adv. Mater. Process
,
166
(
10
), pp.
60
62
.
14.
Al-Bermani
,
S.
,
Blackmore
,
M.
,
Zhang
,
W.
, and
Todd
,
I.
,
2010
, “
The Origin of Microstructural Diversity, Texture, and Mechanical Properties in Electron Beam Melted Ti-6Al-4V
,”
Metall. Mater. Trans. A
,
41
(
13
), pp.
3422
3434
.10.1007/s11661-010-0397-x
15.
Koike
,
M.
,
Martinez
,
K.
,
Guo
,
L.
,
Chahine
,
G.
,
Kovacevic
,
R.
, and
Okabe
,
T.
,
2011
, “
Evaluation of Titanium Alloy Fabricated Using Electron Beam Melting System for Dental Applications
,”
J. Mater. Process. Technol.
,
211
(
8
), pp.
1400
1408
.10.1016/j.jmatprotec.2011.03.013
16.
Donachie
,
M.
,
2000
, “
Titanium: A Technical Guide
,”
ASM International
,
Materials Park, OH
.
17.
Maier
,
V.
,
Durst
,
K.
,
Mueller
,
J.
,
Backes
,
B.
,
Höppel
,
H.
, and
Göken
,
M.
,
2011
, “
Nanoindentation Strain-Rate Jump Tests for Determining the Local Strain-Rate Sensitivity in Nanocrystalline Ni and Ultrafine-Grained Al
,”
J. Mater. Res.
,
26
(
11
), pp.
1421
1430
.10.1557/jmr.2011.156
You do not currently have access to this content.