Hybrid titanium composite laminates (HTCLs) combine the benefits of thin titanium sheets and fiber-reinforced polymer (FRP) composite laminates to design high performance light-weight materials with optimized impact resistance, fracture toughness, durability, and/or thermal performance. This paper starts with a detailed review of typical failure modes observed in HTCLs. The critical manufacturing process of thin grade II titanium sheets combined with HexPly G947/M18 carbon fiber-reinforced polymer laminates is described in detail. This includes the evaluation of titanium surface preparation techniques, which guarantee good adhesive bonding. A systematic experimental study of different HTCL configurations under tensile loading confirms that the major failure modes are debonding between the titanium sheet and the FRP laminate, matrix cracking in the 90 deg plies of the FRP laminate and interlaminar delamination. The results show that HTCLs made from woven carbon FRP plies show higher ultimate strengths and strain at breaks than HTCLs containing a cross-ply composite core made from unidirectional (UD) prepreg.

References

1.
Pahuja
,
R.
,
2015
, “
Abrasive Waterjet Contour Cutting of Thick Titanium/Graphite Laminates
,”
Master's thesis
, University of Washington, Seattle, WAhttp://hdl.handle.net/1773/34047.
2.
Burianek
,
D.
, and
Spearing
,
S.
,
2002
, “
Fatigue Damage in Titanium-Graphite Hybrid Laminates
,”
Compos. Sci. Technol.
,
62
(
5
), pp.
607
617
.
3.
Sinmazçelik
,
T.
,
Avcu
,
E.
,
Bora
,
M.
, and
Çoban
,
O.
,
2011
, “
A Review: Fibre Metal Laminates, Background, Bonding Types and Applied Test Methods
,”
Mater. Des.
,
32
(
7
), pp.
3671
3685
.
4.
Wu
,
G.
, and
Yang
,
J.-M.
,
2005
, “
Analytical Modelling and Numerical Simulation of the Nonlinear Deformation of Hybrid Fibre-Metal Laminates
,”
Model. Simul. Mater. Sci. Eng.
,
13
(
3
), pp.
413
425
.
5.
Seo
,
H.
,
Hahn
,
H.
, and
Yang
,
J.-M.
,
2008
, “
Impact Damage Tolerance and Fatigue Durability of Glare Laminates
,”
ASME J. Eng. Mater. Technol.
,
130
(
4
), p.
041002
.
6.
Niu
,
W.
,
Bermingham
,
M.
,
Baburamani
,
P.
,
Palanisamy
,
S.
,
Dargusch
,
M.
,
Turk
,
S.
,
Grigson
,
B.
, and
Sharp
,
P.
,
2013
, “
The Effect of Cutting Speed and Heat Treatment on the Fatigue Life of Grade 5 and Grade 23 Ti–6Al–4V Alloys
,”
Mater. Des.
,
46
, pp.
640
644
.
7.
Boyer
,
R.
,
2010
, “
Attributes, Characteristics, and Applications of Titanium and Its Alloys
,”
JOM
,
62
(
5
), pp.
21
24
.
8.
Burianek
,
D.
,
1998
, “
Fatigue Damage in Titanium Graphite Hybrid Laminates
,”
AIAA
Paper No. A98-25211.
9.
Johnson
,
W.
, and
Hammond
,
M.
,
2008
, “
Crack Growth Behavior of Internal Titanium Plies of a Fiber Metal Laminate
,”
Composites Part A
,
39
(
11
), pp.
1705
1715
.
10.
Fink
,
A.
,
Camanho
,
P.
,
Andrés
,
J.
,
Pfeiffer
,
E.
, and
Obst
,
A.
,
2010
, “
Hybrid CFRP/Titanium Bolted Joints: Performance Assessment and Application to a Spacecraft Payload Adaptor
,”
Compos. Sci. Technol.
,
70
(
2
), pp.
305
317
.
11.
Camanho
,
P.
,
Fink
,
A.
,
Obst
,
A.
, and
Pimenta
,
S.
,
2009
, “
Hybrid Titanium-CFRP Laminates for High-Performance Bolted Joints
,”
Composites Part A
,
40
(
12
), pp.
1826
1837
.
12.
Veazie
,
D.
,
Badir
,
A.
, and
Grover
,
R.
, Jr.
,
1998
, “
Titanium Ply Effects on the Behavior of a Hybrid Thermoplastic Composite Laminate
,”
J. Thermoplast. Compos. Mater.
,
11
(
5
), pp.
443
454
.
13.
Bernhardt
,
S.
,
Ramulu
,
M.
, and
Kobayashi
,
A.
,
2007
, “
Low-Velocity Impact Response Characterization of a Hybrid Titanium Composite Laminate
,”
ASME J. Eng. Mater. Technol.
,
129
(
2
), pp.
220
226
.
14.
Rhymer
,
D.
, and
Johnson
,
W.
,
2002
, “
Fatigue Damage Mechanisms in Advanced Hybrid Titanium Composite Laminates
,”
Int. J. Fatigue
,
24
(
9
), pp.
995
1001
.
15.
Le Bourlegat
,
L.
,
Damato
,
C.
,
Da Silva
,
D.
,
Botelho
,
E.
, and
Pardini
,
L.
,
2010
, “
Processing and Mechanical Characterization of Titanium-Graphite Hybrid Laminates
,”
J. Reinf. Plast. Compos.
,
29
(
22
), pp.
3392
3400
.
16.
Papakonstantinou
,
C.
, and
Katakalos
,
K.
,
2009
, “
Mechanical Behavior of High Temperature Hybrid Carbon Fiber/Titanium Laminates
,”
ASME J. Eng. Mater. Technol.
,
131
(
2
), p.
021008
.
17.
Kolesnikov
,
B.
,
Herbeck
,
L.
, and
Fink
,
A.
,
2008
, “
CFRP/Titanium Hybrid Material for Improving Composite Bolted Joints
,”
Compos. Struct.
,
83
(
4
), pp.
368
380
.
18.
Cui
,
C.
,
Hu
,
B.
,
Zhao
,
L.
, and
Liu
,
S.
,
2011
, “
Titanium Alloy Production Technology, Market Prospects and Industry Development
,”
Mater. Des.
,
32
(
3
), pp.
1684
1691
.
19.
TMS Titanium,
2013
, “
TMS Titanium—Titanium and the Aerospace Industry
,” TMS Titanium, Poway, CA, accessed Mar. 15, 2015, https://tmstitanium.com/titanium-and-the-aerospace-industry/
20.
Lee
,
D.
,
Morillo
,
C.
,
Oller
,
S.
,
Bugeda
,
G.
, and
Oñate
,
E.
,
2013
, “
Robust Design Optimisation of Advance Hybrid (Fiber-Metal) Composite Structures
,”
Compos. Struct.
,
99
, pp.
181
192
.
21.
Alderliesten
,
R.
,
Hagenbeek
,
M.
,
Homan
,
J.
,
Hooijmeijer
,
P.
,
De Vries
,
T.
, and
Vermeeren
,
C.
,
2003
, “
Fatigue and Damage Tolerance of Glare
,”
Appl. Compos. Mater.
,
10
(
4–5
), pp.
223
242
.
22.
Chai
,
G.
, and
Manikandan
,
P.
,
2014
, “
Low Velocity Impact Response of Fibre-Metal Laminates—A Review
,”
Compos. Struct.
,
107
, pp.
363
381
.
23.
Manikandan
,
P.
, and
Chai
,
G.
,
2014
, “
A Layer-Wise Behavioral Study of Metal Based Interply Hybrid Composites Under Low Velocity Impact Load
,”
Compos. Struct.
,
117
(
1
), pp.
17
31
.
24.
Reiner
,
J.
,
Torres
,
J. P.
,
Veidt
,
M.
, and
Heitzmann
,
M.
,
2016
, “
Experimental and Numerical Analysis of Drop-Weight Low-Velocity Impact Tests on Hybrid Titanium Composite Laminates
,”
J. Compos. Mater.
,
50
(
26
), pp.
3605
3617
.
25.
Burianek
,
D.
,
Shim
,
D.-J.
, and
Spearing
,
S.
,
2005
, “
Durability of Hybrid Fiber Metal Composite Laminates
,” 11th International Conference on Fracture (ICF11), Turin, Italy, Mar. 20–25, pp.
2090
2094
.
26.
Ogasawara
,
T.
,
Arai
,
N.
,
Fukumoto
,
R.
,
Ogawa
,
T.
,
Yokozeki
,
T.
, and
Yoshimura
,
A.
,
2014
, “
Titanium Alloy Foil-Inserted Carbon Fiber/Epoxy Composites for Cryogenic Propellant Tank Application
,”
Adv. Compos. Mater.
,
23
(
2
), pp.
129
149
.
27.
Bhaumik
,
S. K.
,
Divakar
,
C.
, and
Singh
,
A. K.
,
1995
, “
Machining Ti-6Al-4V Alloy With a WBN-CBN Composite Tool
,”
Mater. Des.
,
16
(
4
), pp.
221
226
.
28.
Ramulu
,
M.
, and
Spaulding
,
M.
,
2016
, “
Drilling of Hybrid Titanium Composite Laminate (HTCL) With Electrical Discharge Machining
,”
Materials
,
9
(
9
), p. 746.
29.
Jakubczak
,
P.
,
Surowska
,
B.
, and
Bienias
,
J.
,
2016
, “
Evaluation of Force-Time Changes During Impact of Hybrid Laminates Made of Titanium and Fibrous Composite
,”
Arch. Metallurgy Mater.
,
61
(
2A
), pp.
689
693
.
30.
Teoh
,
S.
,
Thampuran
,
R.
, and
Seah
,
W.
,
1998
, “
Coefficient of Friction Under Dry and Lubricated Conditions of a Fracture and Wear Resistant P/M Titanium-Graphite Composite for Biomedical Applications
,”
Wear
,
214
(
2
), pp.
237
244
.
31.
Wang
,
Q.
,
Han
,
X.
,
Sommers
,
A.
,
Park
,
Y.
,
T'Joen
,
C.
, and
Jacobi
,
A.
,
2012
, “
A Review on Application of Carbonaceous Materials and Carbon Matrix Composites for Heat Exchangers and Heat Sinks
,”
Int. J. Refrig.
,
35
(
1
), pp.
7
26
.
32.
Klett
,
J.
, and
Conway
,
B.
,
2000
, “
Thermal Management Solutions Utilizing High Thermal Conductivity Graphite Foams
,”
45th International SAMPE Symposium and Exhibition
, Long Beach, CA, May 21–25, pp. 1933–1943https://www.researchgate.net/publication/266269710_Thermal_management_solutions_utilizing_high_thermal_conductivity_graphite_foams.
33.
Singh
,
M.
,
Asthana
,
R.
,
Gyekenyesi
,
A.
, and
Smith
,
C.
,
2012
, “
Bonding and Integration of Titanium to Graphitic Foams for Thermal Management Applications
,”
Int. J. Appl. Ceram. Technol.
,
9
(
4
), pp.
657
665
.
34.
Wang
,
X.
,
Ahn
,
J.
,
Lee
,
J.
, and
Blackman
,
B. R.
,
2016
, “
Investigation on Failure Modes and Mechanical Properties of CFRP-Ti6Al4V Hybrid Joints With Different Interface Patterns Using Digital Image Correlation
,”
Mater. Des.
,
101
, pp.
188
196
.
35.
Sinke
,
J.
,
2006
, “
Development of Fibre Metal Laminates: Concurrent Multi-Scale Modeling and Testing
,”
J. Mater. Sci.
,
41
(
20
), pp.
6777
6788
.
36.
Dim
,
D.
, and
Ramulu
,
M.
,
2007
, “
Study on the Drilling of Titanium/Graphite Hybrid Composites
,”
ASME J. Eng. Mater. Technol.
,
129
(
3
), pp.
390
396
.
37.
Xu
,
J.
,
Mkaddem
,
A.
, and
El Mansori
,
M.
,
2016
, “
Recent Advances in Drilling Hybrid FRP/TI Composite: A State-of-the-Art Review
,”
Compos. Struct.
,
135
, pp.
316
338
.
38.
Giasin
,
K.
,
Ayvar-Soberanis
,
S.
, and
Hodzic
,
A.
,
2015
, “
An Experimental Study on Drilling of Unidirectional Glare Fibre Metal Laminates
,”
Compos. Struct.
,
133
, pp.
794
808
.
39.
Hundley
,
J. M.
,
Hahn
,
H. T.
,
Yang
,
J.-M.
, and
Facciano
,
A. B.
,
2011
, “
Three-Dimensional Progressive Failure Analysis of Bolted Titanium-Graphite Fiber Metal Laminate Joints
,”
J. Compos. Mater.
,
45
(
7
), pp.
751
769
.
40.
Ramulu
,
M.
,
Stickler
,
P.
,
McDevitt
,
N.
,
Datar
,
I.
,
Kim
,
D.
, and
Jenkins
,
M.
,
2004
, “
Influence of Processing Methods on the Tensile and Flexure Properties of High Temperature Composites
,”
Compos. Sci. Technol.
,
64
(
12
), pp.
1763
1772
.
41.
Nakatani
,
H.
,
Kosaka
,
T.
,
Osaka
,
K.
, and
Sawada
,
Y.
,
2011
, “
Facesheet Effects on the Low Velocity Impact Damages in Titanium/GFRP Hybrid Laminates
,” 18th Conference on Composite Materials (
ICCM
), Jeju, South Korea, Aug. 21–26http://www.iccm-central.org/Proceedings/ICCM18proceedings/data/2.%20Oral%20Presentation/Aug23(Tuesday)/T09%20Impact%20and%20Dynamic%20Response/T9-6-AF1331.pdf.
42.
Kashaev
,
N.
,
Ventzke
,
V.
,
Riekehr
,
S.
,
Dorn
,
F.
, and
Horstmann
,
M.
,
2015
, “
Assessment of Alternative Joining Techniques for Ti–6Al–4V/CFRP Hybrid Joints Regarding Tensile and Fatigue Strength
,”
Mater. Des.
,
81
, pp.
73
81
.
43.
Molitor
,
P.
,
Barron
,
V.
, and
Young
,
T.
,
2001
, “
Surface Treatment of Titanium for Adhesive Bonding to Polymer Composites: A Review
,”
Int. J. Adhes. Adhes.
,
21
(
2
), pp.
129
136
.
44.
da Silva
,
L.
,
Öchsner
,
A.
, and
Adams
,
R.
,
2011
,
Handbook of Adhesion Technology
,
Springer-Verlag
,
Berlin
.
45.
Wegman
,
R. F.
, and
Van Twisk
,
J.
,
2012
,
Surface Preparation Techniques for Adhesive Bonding
, William Andrew, Norwich, NY.
46.
Kennedy
,
A.
,
Kohler
,
R.
, and
Poole
,
P.
,
1983
, “
A Sodium Hydroxide Anodize Surface Pretreatment for the Adhesive Bonding of Titanium Alloys
,”
Int. J. Adhesion Adhes.
,
3
(
3
), pp.
133
139
.
47.
Hexcel
,
2007
, “
HexPly M18/1 Datasheet 3
,” Hexcel, Stamford, CT.
48.
Wu
,
G.
, and
Yang
,
J.-M.
,
2005
, “
The Mechanical Behavior of Glare Laminates for Aircraft Structures
,”
JOM
,
57
(
1
), pp.
72
79
.
49.
ASTM
,
2013
, “
Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials
,” ASTM International, West Conshohocken, PA, Standard No.
D3039-13
.
50.
Reiner
,
J.
,
Torres
,
J. P.
, and
Veidt
,
M.
,
2017
, “
A Novel Top Surface Analysis Method for Mode I Interface Characterisation Using Digital Image Correlation
,”
Eng. Fract. Mech.
,
173
, pp.
107
117
.
This content is only available via PDF.
You do not currently have access to this content.