Abstract

A novel non-bonded interface technique (NBIT) is used to analyze internal residual strain by combining a pre-split sample of AISI 4340 steel with the circular grid residual strain analysis technique. NBIT is compared with an implicit non-linear finite element (FE) model using LS-DYNA. A split FE model was compared with a quarter FE model to determine the split interface that causes an average difference of 9.0% on the residual von Mises strain field from a 588.6 N indentation. The homogeneous FE quarter model was then compared with the experimental split model using 588.6, 981.0, and 1471.5 N indentation forces. An average displacement difference of 3.92 µm was found when comparing the experimental split and FE homogeneous samples from a 588.6 N indentation. The internal residual major and minor principal strains from the split experimental sample and homogeneous FE model were compared for each indentation force. The minor principal strain results show the 588.6, 981.0, and 1471.5 N indentation forces resulted in a difference between the experimental split and homogeneous FE model of 28.5%, 34.8%, and 26.0%, respectively. The difference between the comparisons was explained by the inability of the FE model to simulate local non-homogeneous material properties such as grain composition and orientation whereas NBIT does. NBIT can be used for micro- or macro-scale residual strain analysis as the spatial resolution is highly adjustable.

References

1.
Mathar
,
J.
,
1934
, “
Determination of Initial Stresses by Measuring the Deformation Around Drilled Holes
,”
Trans. ASME
,
56
(
4
), p.
1
.
2.
ASTM E837-13a
,
2013
, “
Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method
,”
Stand. Test Method E837-13a
, Vol.
i
, pp.
1
16
.
3.
Sathish
,
S.
,
Moran
,
T. J.
,
Martin
,
R. W.
, and
Reibel
,
R.
,
2005
, “
Residual Stress Measurement With Focused Acoustic Waves and Direct Comparison With X-ray Diffraction Stress Measurements
,”
Mater. Sci. Eng. A
,
399
(
1–2
), pp.
84
91
. 10.1016/j.msea.2005.02.020
4.
Bueckner
,
H.
,
1958
, “
The Propagation of Cracks and the Energy of Elastic Deformation
,”
Trans. Am. Soc. Mech. Eng.
,
80
(
6
), pp.
1225
1230
.
5.
Withers
,
P. J.
,
Turski
,
M.
,
Edwards
,
L.
,
Bouchard
,
P. J.
, and
Buttle
,
D. J.
,
2008
, “
Recent Advances in Residual Stress Measurement
,”
Int. J. Press. Vessel. Pip.
,
85
(
3
), pp.
118
127
. 10.1016/j.ijpvp.2007.10.007
6.
Alkaisee
,
R.
, and
Peng
,
R. L.
,
2014
, “
Influence of Layer Removal Methods in Residual Stress Profiling of a Shot Peened Steel Using X-Ray Diffraction
,”
Adv. Mater. Res.
,
996
(
1
), pp.
175
180
. www.scientific.net/AMR.996.175
7.
Wang
,
C. C.
,
Lee
,
J.
,
Chen
,
L. W.
, and
Lai
,
H. Y.
,
2000
, “
A New Method for Circular Grid Analysis in the Sheet Metal Forming Test
,”
Exp. Mech.
,
40
(
2
), pp.
190
196
. 10.1007/BF02325045
8.
Guiberteau
,
F.
,
Padture
,
N. P.
, and
Lawn
,
B. R.
,
1994
, “
Effect of Grain Size on Hertzian Contact Damage in Alumina
,”
J. Am. Ceram. Soc.
,
77
(
7
), pp.
1825
1831
. 10.1111/j.1151-2916.1994.tb07057.x
9.
Yu
,
H.
,
Sun
,
Z.
,
Zhao
,
H.
, and
Zhu
,
M. H.
,
2007
, “
Stress Analysis of Bonded-Interface Technique on Subsurface Damage Observations of Brittle Porcelains
,”
Key Eng. Mater.
,
353–358
(
1
), pp.
864
867
. www.scientific.net/KEM.353-358.864
10.
Gao
,
Y. F.
,
Yang
,
B.
, and
Nieh
,
T. G.
,
2007
, “
Thermomechanical Instability Analysis of Inhomogeneous Deformation in Amorphous Alloys
,”
Acta Mater.
,
55
(
7
), pp.
2319
2327
. 10.1016/j.actamat.2006.11.027
11.
Ramamurty
,
U.
,
Jana
,
S.
,
Kawamura
,
Y.
, and
Chattopadhyay
,
K.
,
2005
, “
Hardness and Plastic Deformation in a Bulk Metallic Glass
,”
Acta Mater.
,
53
(
3
), pp.
705
717
. 10.1016/j.actamat.2004.10.023
12.
Helbawi
,
H.
,
Zhang
,
L.
, and
Zarudi
,
I.
,
2001
, “
Difference in Subsurface Damage in Indented Specimens with and Without Bonding Layer
,”
Int. J. Mech. Sci.
,
43
(
4
), pp.
1107
1121
. 10.1016/S0020-7403(00)00032-1
13.
Almotairi
,
A.
,
2016
,
Mechanical and Thermal Damage of Hard Chromium Coatings on 416 Stainless Steel
,
Dalhousie University
,
Halifax, Nova Scotia
.
14.
Green
,
D. J.
,
1998
,
An Introduction to the Mechanical Properties of Ceramics
,
Cambridge University Press
,
Cambridge
.
15.
ASM International Handbook Committee
,
1986
,
Materials Characterization
, Vol.
10
,
ASM International
,
Materials Park, OH
.
16.
Fortune Smith
,
W.
,
1993
,
Structure and Properties of Engineering Alloys
, 2nd ed.,
McGraw-Hill
,
New York
.
17.
Hariharan
,
K.
, and
Suresh
,
S.
,
2007
, “
Comparison of Optical Strain Analysis and Circular Grid Analysis in Sheet Metal Forming
,”
SAE Technical Paper Number 724.
10.4271/2007-01-4282
18.
LSTC
,
2013
,
Keyword Users Manual
, Vol.
I
,
LSTC
,
Livermore
.
19.
Anderson
,
D.
,
Warkentin
,
A.
, and
Bauer
,
R.
,
2011
, “
Simulation of Deep Spherical Indentation Using Eulerian Finite Element Methods
,”
ASME J. Tribol.
,
133
(
2
), p.
021401
. 10.1115/1.4003703
20.
Gangaraj
,
S. M. H.
,
Guagliano
,
M.
, and
Farrahi
,
G. H.
,
2014
, “
An Approach to Relate Shot Peening Finite Element Simulation to the Actual Coverage
,”
Surf. Coatings Technol.
,
243
(
1
), pp.
39
45
. 10.1016/j.surfcoat.2012.03.057
21.
Polyzois
,
I.
, and
Bassim
,
N.
,
2015
, “
Microstructural Simulation of Adiabatic Shear Band Formation in AISI 4340 Steel Using Voronoi Tessellation
,”
Comput. Mater. Sci.
,
109
(
1
), pp.
157
171
. 10.1016/j.commatsci.2015.06.041
22.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
7th International Symposium on Ballistics
,
The Hague, The Netherlands
,
Apr. 19–21
, pp.
541
547
.
23.
Rule
,
W. K.
,
1997
, “
A Numerical Scheme for Extracting Strength Model Coefficients From Taylor Test Data
,”
Int. J. Impact Eng.
,
19
(
9–10
), pp.
797
810
. 10.1016/S0734-743X(97)00015-8
24.
Gensamer
,
M.
,
Pearsall
,
E. B.
,
Pellini
,
W. S.
, and
Low
,
J. R.
,
2012
, “
The Tensile Properties of Pearlite, Bainite, and Spheroidite
,”
Metallogr. Microstruct. Anal.
,
1
(
3–4
), pp.
171
189
. 10.1007/s13632-012-0027-7
25.
Gonzaga
,
R. A.
,
2013
, “
Influence of Ferrite and Pearlite Content on Mechanical Properties of Ductile Cast Irons
,”
Mater. Sci. Eng. A
,
567
, pp.
1
8
. 10.1016/j.msea.2012.12.089
You do not currently have access to this content.