Abstract

The objective of this research is to describe the consequence of thermal ratcheting on the long-term creep property of the high-density polyethylene (HDPE) material. The thermal ratcheting phenomenon increases significantly the creep strain of HDPE. The magnitude of the creep strain of HDPE increases by 8% after just 20 thermal cycles between 28 and 50 °C. The creep modulus, which is inversely proportional to the creep strain, depletes further under thermal ratcheting. Both the properties change significantly with the number of thermal cycles. The coefficient of thermal expansion (CTE) of HDPE varies with the applied compressive load, with successive thermal cycles, and with the thermal ratcheting temperature. The impact of thermal ratcheting diminishes with an increase in initial steady creep exposure time period, but still the magnitude cumulative deformation induced is noteworthy. The magnitude of growth in creep strain drops from 8% to 2.4% when thermal ratcheting is performed after 1 and 45 days of steady creep, respectively. There is a notable change in the thickness of the material with each heating and cooling cycle even after 45 days of creep; however, the thermal ratcheting strain value drops by 80% in comparison with the thermal ratcheting strain after 1 day of creep and under similar test conditions.

References

1.
Mruk
,
S.
,
Mark
,
H. F.
,
Bikales
,
N. M.
,
Overberger
,
C. G.
,
Menges
,
G.
, and
Kroschwitz
,
J. I.
,
1988
,
Pipe. Encyclopedia of Polymer Science and Technology
,
Wiley
,
New York
, p.
226
.
2.
Stewart
,
R.
,
2005
, “
Designers and Engineers Seek Materials to Reduce Weight for Improved Mileage
,”
Plast. Eng.
,
61
(
9
), pp.
14
18
.
3.
Brown
,
N.
, and
Bhatacharya
,
S. K.
,
1985
, “
The Initiation of Slow Crack Growth in Linear Polyethylene Under Single Edge Notch Tension and Plane Strain
,”
J. Mater. Sci.
,
20
(
12
), pp.
4553
4560
. 10.1007/BF00559346
4.
Lu
,
X.
, and
Brown
,
N.
,
1987
, “
Effect of Thermal History on the Initiation of Slow Crack Growth on Linear Polyethylene
,”
Polymer
,
28
(
9
), pp.
1505
1511
. 10.1016/0032-3861(87)90350-8
5.
Brown
,
N.
, and
Wang
,
X.
,
1988
, “
Direct Measurements of Strain on the Boundary of Crazes in Polyethylene
,”
Polymer
,
29
(
3
), pp.
463
466
. 10.1016/0032-3861(88)90363-1
6.
Lu
,
X.
,
Wang
,
X.
, and
Brown
,
N.
,
1988
, “
Slow Fracture in Homopolymer and Copolymer of Polyethylene
,”
J. Mater. Sci.
,
23
(
2
), pp.
643
648
. 10.1007/BF01174699
7.
Wang
,
X.
, and
Brown
,
N.
,
1989
, “
The Stress and Strain Fields in the Neighborhood of a Notch in Polyethylene
,”
Polymer
,
30
(
8
), pp.
1456
1461
. 10.1016/0032-3861(89)90215-2
8.
Lu
,
X.
, and
Brown
,
N.
,
1990
, “
The Transition From Ductile to Slow Crack Growth Failure in a Copolymer of Polyethylene
,”
J. Mater. Sci.
,
25
(
1
), pp.
411
416
. 10.1007/BF00714048
9.
Lu
,
X.
,
Qian
,
R.
, and
Brown
,
N.
,
1991
, “
Discontinuous Crack Growth in Polyethylene Under a Constant Load
,”
J. Mater. Sci.
,
26
(
4
), pp.
917
924
. 10.1007/BF00576768
10.
Ward
,
A. L.
,
Lu
,
X.
, and
Brown
,
N.
,
1990
, “
Accelerated Test for Evaluating Slow Crack Growth of Polyethylene Copolymers in Igepal and Air
,”
Polym. Eng. Sci.
,
30
(
18
), pp.
1175
1179
. 10.1002/pen.760301811
11.
Niklas
,
H.
, and
Eifflaender
,
K.
,
1959
, “
Long-Term Creep Effects With Polyethylene and Polyvinylchloride Pipe
,”
Kunststoffe
,
49
(
3
), pp.
109
113
.
12.
Bergen
,
J. R. L.
,
1967
, “
Creep of Thermoplastics in Glassy Region—Stress as Reduced Variable
,”
Proc. 25th SPE—Annual Technical Conference
,
USA
,
Jan. 1
, pp.
239
243
.
13.
Zhang
,
C.
, and
Moore
,
I. D.
,
1997
, “
Nonlinear Mechanical Response of High Density Polyethylene. Part I: Experimental Investigation and Model Evaluation
,”
Polym. Eng. Sci.
,
37
(
2
), pp.
404
413
. 10.1002/pen.11683
14.
Zhang
,
C.
, and
Moore
,
I. D.
,
1997
, “
Nonlinear Mechanical Response of High Density Polyethylene. Part II: Uniaxial Constitutive Modeling
,”
Polym. Eng. Sci.
,
37
(
2
), pp.
414
420
. 10.1002/pen.11684
15.
Lai
,
J.
, and
Bakker
,
A.
,
1995
, “
Analysis of the Non-Linear Creep of High-Density Polyethylene
,”
Polymer
,
36
(
1
), pp.
93
99
. 10.1016/0032-3861(95)90680-Z
16.
Colak
,
O. U.
, and
Dunsunceli
,
N.
,
2006
, “
Modeling Viscoelastic and Viscoplastic Behavior of High Density Polyethylene (HDPE)
,”
ASME J. Eng. Mater. Technol.
,
128
(
4
), pp.
572
577
. 10.1115/1.2345449
17.
Hamouda
,
H. B. H.
,
Simoes-betbeder
,
M.
,
Grillon
,
F.
,
Blouet
,
P.
,
Billon
,
N.
, and
Piques
,
R.
,
2001
, “
Creep Damage Mechanisms in Polyethylene Gas Pipes
,”
Polymer
,
42
(
12
), pp.
5425
5437
. 10.1016/S0032-3861(00)00490-0
18.
Dusunceli
,
N.
,
Aydemir
,
B.
, and
Terzi
,
N. U.
,
2010
, “
Cyclic Behavior of High Density Polyethylene (HDPE)
,”
AIP Conf. Proc.
,
1255
(
1
), pp.
58
60
. 10.1063/1.3455664
19.
Cardile
,
G.
,
Moraci
,
N.
, and
Pisano
,
M.
,
2016
, “
Tensile Behaviour of an HDPE Geogrid Under Cyclic Loading: Experimental Results and Empirical Modelling
,”
Geosynth. Int.
,
24
(
1
), pp.
95
112
. 10.1680/jgein.16.00019
20.
Kaiya
,
N.
,
Takahara
,
A.
, and
Kajiyama
,
T.
,
1989
, “
Fatigue Fracture Behavior of Solid-State Extruded High-Density Polyethylene
,”
Polym. J.
,
21
(
7
), pp.
523
531
. 10.1295/polymj.21.523
21.
Dong
,
C. X.
,
Zhu
,
S. J.
,
Mizuno
,
M.
, and
Hashimoto
,
M.
,
2011
, “
Fatigue Behavior of HDPE Composite Reinforced With Silane Modified TiO2
,”
J. Mater. Sci. Technol.
,
27
(
7
), pp.
659
667
. 10.1016/S1005-0302(11)60122-9
22.
Chen
,
H.
,
Scavuzza
,
R. J.
, and
Srivatsan
,
T. S.
,
1997
, “
Influence of Joining on the Fatigue and Fracture Behavior of High Density Polyethylene Pipe
,”
J. Mater. Eng. Perform.
,
6
(
4
), pp.
473
480
. 10.1007/s11665-997-0119-8
23.
Kanthabhabha Jeya
,
R. P.
, and
Bouzid
,
A. H.
,
2017
, “
Creep and Thermal Ratcheting Characterization of Polyfluorotetraethlene Based Gaskets Materials
,”
J. Adv. Mater. Proc.
,
2
(
10
), pp.
609
614
. 10.5185/amp.2017/027
24.
Kanthabhabha Jeya
,
R. P.
, and
Bouzid
,
A. H.
,
2018
, “
Compression Creep and Thermal Ratcheting Behavior of High Density Polyethylene (HDPE)
,”
Polymers
,
10
(
2
), pp.
156
. 10.3390/polym10020156
25.
Bouzid
,
A. H.
, and
Chaaban
,
A.
,
1997
, “
An Accurate Method of Evaluating Relaxation in Bolted Flanged Connections
,”
ASME J. Pressure Vessel Technol.
,
119
(
1
), pp.
10
17
. 10.1115/1.2842254
26.
Bouzid
,
A. H.
, and
Benabdallah
,
S.
,
2013
, “
Characterization of PTFE Based Gaskets at High Temperature
,”
ASME J. Pressure Vessel Technol.
,
137
(
3
), p.
031012
.
27.
Bouzid
,
A. H.
,
Derenne
,
M.
,
Marchand
,
L.
, and
Payne
,
J. R.
,
2001
, “
Service Temperature Characterization of Polytetrafluoroethylene Based Gaskets
,”
J. Test. Eval.
,
29
(
5
), pp.
442
452
. 10.1520/jte12274j
You do not currently have access to this content.