Abstract

Porosity in metals is well known to influence the mechanical behavior, namely, the elastic response, the plastic behavior, and the material loading capacity. The main focus of the current work is to investigate the failure of porous metals. Extensive literature search was conducted to identify failure mechanisms associated with the increase of porosity for up to 15% by volume. Consequently, micromechanical modeling is utilized to investigate the damage process at microlengths. Finally, a complete macromechanical modeling approach is proposed for specimen-sized models. The approach utilizes the extended Ramberg–Osgood relationship for the elastoplastic behavior, while the failure is predicted using a strain energy-based failure criterion capturing the effect of porosity. The proposed approach is validated against several testing results for different metals at various porosity levels.

References

1.
Wolff
,
S.
,
Lee
,
T.
,
Faierson
,
E.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2016
, “
Anisotropic Properties of Directed Energy Deposition (DED)-Processed Ti–6Al–4V
,”
J. Manuf. Process.
,
24
(
Part 2
), pp.
397
405
. 10.1016/j.jmapro.2016.06.020
2.
Aboulkhair
,
N. T.
,
Everitt
,
N. M.
,
Ashcroft
,
I.
, and
Tuck
,
C.
,
2014
, “
Reducing Porosity in AlSi10Mg Parts Processed by Selective Laser Melting
,”
Addit. Manuf.
,
1–4
, pp.
77
86
. 10.1016/j.addma.2014.08.001
3.
Zaharin
,
H. A.
,
Rani
,
A. M. A.
,
Azam
,
F. I.
,
Ginta
,
T. L.
,
Sallih
,
N.
,
Ahmad
,
A.
,
Yunus
,
N. A.
, and
Zulkifli
,
T. Z. A.
,
2018
, “
Effect of Unit Cell Type and Pore Size on Porosity and Mechanical Behavior of Additively Manufactured Ti6Al4V Scaffolds
,”
Materials (Basel)
,
11
(
12
), p.
2402
. 10.3390/ma11122402
4.
Zheng
,
B.
,
Zhou
,
Y.
,
Smugeresky
,
J. E.
,
Schoenung
,
J. M.
, and
Lavernia
,
E. J.
,
2008
, “
Thermal Behavior and Microstructural Evolution During Laser Deposition With Laser-Engineered Net Shaping: Part I. Numerical Calculations
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
39
(
9
), pp.
2228
2236
. 10.1007/s11661-008-9557-7
5.
Wang
,
F.
,
Williams
,
S.
,
Colegrove
,
P.
, and
Antonysamy
,
A. A.
,
2013
, “
Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured Ti-6Al-4V
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
44
(
2
), pp.
968
977
. 10.1007/s11661-012-1444-6
6.
Slotwinski
,
J. A.
,
Garboczi
,
E. J.
, and
Hebenstreit
,
K. M.
,
2014
, “
Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control
,”
J. Res. Natl. Inst. Stand. Technol.
,
119
, pp.
494
528
. 10.6028/jres.119.019
7.
Choren
,
J. A.
,
Heinrich
,
S. M.
, and
Silver-Thorn
,
M. B.
,
2013
, “
Young’s Modulus and Volume Porosity Relationships for Additive Manufacturing Applications
,”
J. Mater. Sci.
,
48
(
15
), pp.
5103
5112
. 10.1007/s10853-013-7237-5
8.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
. 10.1007/s11665-014-0958-z
9.
Cao
,
Y. J.
,
Shen
,
W. Q.
,
Shao
,
J. F.
, and
Burlion
,
N.
,
2018
, “
Influences of Micro-Pores and Meso-Pores on Elastic and Plastic Properties of Porous Materials
,”
Eur. J. Mech.-A/Solids
,
72
, pp.
407
423
. 10.1016/j.euromechsol.2018.06.003
10.
Song
,
D.
, and
Ponte Castañeda
,
P.
,
2017
, “
A Finite-Strain Homogenization Model for Viscoplastic Porous Single Crystals: I—Theory
,”
J. Mech. Phys. Solids
,
107
, pp.
560
579
. 10.1016/j.jmps.2017.06.008
11.
Mbiakop
,
A.
,
Constantinescu
,
A.
, and
Danas
,
K.
,
2015
, “
An Analytical Model for Porous Single Crystals with Ellipsoidal Voids
,”
J. Mech. Phys. Solids
,
84
, pp.
436
467
. 10.1016/j.jmps.2015.07.011
12.
Elruby
,
A. Y.
, and
Nakhla
,
S.
,
2019
, “
Extending the Ramberg–Osgood Relationship to Account for Metal Porosity
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
50
(
7
), pp.
3121
3131
. 10.1007/s11661-019-05236-7
13.
Bourcier
,
R. J.
,
Koss
,
D. A.
,
Smelser
,
R. E.
, and
Richmond
,
O.
,
1986
, “
The Influence of Porosity on the Performance and Properties of Parachutes
,”
Acta Metall.
,
34
(
12
), pp.
2443
2453
. 10.1016/0001-6160(86)90147-1
14.
Bertini
,
L.
,
Fontanari
,
V.
, and
Straffelini
,
G.
,
1998
, “
Tensile and Bending Behavior of Sintered Alloys: Experimental Results and Modeling
,”
ASME J. Eng. Mater. Technol. Trans. ASME
,
120
(
3
), pp.
248
255
. 10.1115/1.2812351
15.
Horn
,
J. J.
,
Stephens
,
R. I.
, and
Prucher
,
T.
,
1998
, “
Influence of Density and Sintering Temperature on Fatigue Crack Growth and Fracture Toughness of FL4405 High Strength PM Steel
,”
Powder Metall.
,
41
(
3
), pp.
205
210
. 10.1179/pom.1998.41.3.205
16.
Stephens
,
R. I.
,
Horn
,
J. J.
,
Poland
,
D. D.
, and
Sager
,
E. A.
,
1998
, “Influence of density and porosity size and shape on fatigue and fracture toughness of high strength FL4405 P/M steel,” In
Effects of product quality and design criteria on structural integrity
.
ASTM
, STP1337-EB, pp.
72
101
.
17.
Elruby
,
A. Y.
, and
Nakhla
,
S.
,
2019
, “
Strain Energy Density Based Damage Initiation in Heavily Cross-Linked Epoxy Using XFEM
,”
Theor. Appl. Fract. Mech.
,
103
, pp.
102254
. 10.1016/j.tafmec.2019.102254
18.
Elnekhaily
,
S. A.
, and
Talreja
,
R.
,
2018
, “
Damage Initiation in Unidirectional Fiber Composites With Different Degrees of Nonuniform Fiber Distribution
,”
Compos. Sci. Technol.
,
155
, pp.
22
32
. 10.1016/j.compscitech.2017.11.017
19.
Li
,
Q. M.
,
2001
, “
Strain Energy Density Failure Criterion
,”
Int. J. Solids Struct.
,
38
(
38–39
), pp.
6997
7013
.
20.
Wei
,
Y.
,
2012
, “
An Extended Strain Energy Density Failure Criterion by Differentiating Volumetric and Distortional Deformation
,”
Int. J. Solids Struct.
,
49
(
9
), pp.
1117
1126
. 10.1016/j.ijsolstr.2012.01.015
21.
Chawla
,
N.
, and
Deng
,
X.
,
2005
, “
Microstructure and Mechanical Behavior of Porous Sintered Steels
,”
Mater. Sci. Eng. A
,
390
(
1–2
), pp.
98
112
. 10.1016/j.msea.2004.08.046
22.
Pabst
,
W.
, and
Gregorová
,
E.
,
2015
, “
Critical Assessment 18: Elastic and Thermal Properties of Porous Materials -Rigorous Bounds and Cross-Property Relations
,”
Mater. Sci. Technol. (United Kingdom)
,
31
(
15
), pp.
1801
1808
. 10.1080/02670836.2015.1114697
23.
Hardin
,
R. A.
, and
Beckermann
,
C.
,
2013
, “
Effect of Porosity on Deformation, Damage, and Fracture of Cast Steel
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
44
(
12
), pp.
5316
5332
. 10.1007/s11661-013-1669-z
24.
Cain
,
V.
,
Thijs
,
L.
,
Van Humbeeck
,
J.
,
Van Hooreweder
,
B.
, and
Knutsen
,
R.
,
2015
, “
Crack Propagation and Fracture Toughness of Ti6Al4V Alloy Produced by Selective Laser Melting
,”
Addit. Manuf.
,
5
, pp.
68
76
.
25.
Li
,
L.
, and
Aubertin
,
M.
,
2003
, “
A General Relationship Between Porosity and Uniaxial Strength of Engineering Materials
,”
Can. J. Civ. Eng.
,
30
(
4
), pp.
644
658
. 10.1139/l03-012
26.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
,
32
(
1
), pp.
157
169
. 10.1016/0001-6160(84)90213-X
27.
Liu
,
S.
, and
Shin
,
Y. C.
,
2019
, “
Additive Manufacturing of Ti6Al4V Alloy: A Review
,”
Mater. Des.
,
164
(
Feb
), pp.
107552
. 10.1016/j.matdes.2018.107552
28.
Bal’shin
,
M. Y.
,
1949
, “
Dependence of the Mechanical Properties of Porous Materials on Their Porosity and the Limiting Properties of Porous Sintered Materials
,”
Dokl. Akad. Nauk SSSR
,
67
(
5
), pp.
831
834
.
29.
Ryshkewitch
,
E.
,
1953
, “
Compression Strength of Porous Sintered Alumina and Zirconia: 9th Communication to Ceramography
,”
J. Am. Ceram. Soc.
,
36
(
2
), pp.
65
68
. 10.1111/j.1151-2916.1953.tb12837.x
30.
Duckworth
,
W.
,
1953
, “
Discussion of Ryshkewitch Paper by Winston Duckworth
,”
J. Am. Ceram. Soc.
,
36
(
2
), p.
68
. 10.1111/j.1151-2916.1953.tb12838.x
31.
Knudsen
,
F. P.
,
1959
, “
Dependence of Mechanical Strength of Brittle Polycrystalline Specimens on Porosity and Grain Size
,”
J. Am. Ceram. Soc.
,
42
(
8
), pp.
376
387
. 10.1111/j.1151-2916.1959.tb13596.x
32.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
(
5
), pp.
357
372
. 10.1016/0022-5096(63)90036-X
33.
Salahouelhadj
,
A.
, and
Haddadi
,
H.
,
2010
, “
Estimation of the Size of the RVE for Isotropic Copper Polycrystals by Using Elastic-Plastic Finite Element Homogenisation
,”
Comput. Mater. Sci.
,
48
(
3
), pp.
447
455
. 10.1016/j.commatsci.2009.12.014
34.
Sharma
,
N. K.
,
Mishra
,
R. K.
, and
Sharma
,
S.
,
2016
, “
3D Micromechanical Analysis of Thermo-Mechanical Behavior of Al2O3/Al Metal Matrix Composites
,”
Comput. Mater. Sci.
,
115
, pp.
192
201
. 10.1016/j.commatsci.2015.12.051
35.
Siavouche
,
N.-N.
, and
Hori
,
M.
,
1993
,
Micromechanics: Overall Properties of Heterogeneous Materials
,
Elsevier BV.
,
New York
.
36.
Hashin
,
Z.
, and
Rotem
,
A.
,
1973
, “
A Fatigue Failure Criterion for Fiber Reinforced Materials
,”
J. Compos. Mater.
,
7
(
4
), pp.
448
464
. 10.1177/002199837300700404
37.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
,
21
(
5
), pp.
571
574
. 10.1016/0001-6160(73)90064-3
38.
Hill
,
R.
,
2006
, “
The Elastic Field of an Inclusion in an Anisotropic Medium
,”
Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
,
300
(
1461
), pp.
270
289
.
39.
Nemat-Nasser
,
S.
, and
Taya
,
M.
,
1981
, “
On Effective Moduli of an Elastic Body Containing Periodically Distributed Voids
,”
Q. Appl. Math.
,
39
(
1
), pp.
43
59
. 10.1090/qam/99626
40.
2014
,
Abaqus Documentation
,
Dassault Systèmes
,
Providence, Rhode Island
.
41.
Ramberg
,
W.
, and
Osgood
,
W. R.
,
1943
,
Description of Stress-Strain Curves by Three Parameters
.
42.
D’Armas
,
H.
,
Llanes
,
L.
,
Peñafiel
,
J.
,
Bas
,
J.
, and
Anglada
,
M.
,
2000
, “
Tempering Effects on the Tensile Response and Fatigue Life Behavior of a Sinter-Hardened Steel
,”
Mater. Sci. Eng. A
,
277
(
1–2
), pp.
291
296
. 10.1016/S0921-5093(99)00533-X
43.
Straffelini
,
G.
,
Benedetti
,
M.
, and
Fontanari
,
V.
,
2014
, “
Damage Evolution in Sinter-Hardening Powder-Metallurgy Steels During Tensile and Fatigue Loading
,”
Mater. Des.
,
61
, pp.
101
108
. 10.1016/j.matdes.2014.04.027
44.
Shames
,
I. H.
,
1997
,
Elastic and Inelastic Stress Analysis
,
CRC Press
,
Boca Raton, FL
.
45.
Jones
,
R. M.
,
2009
,
Deformation Theory of Plasticity
,
Bull Ridge Corporation
,
Blacksburg, VA
.
46.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
2010
,
Theory of Elasticity
,
McGraw-Hill Ltd.
,
Singapore
.
You do not currently have access to this content.