Abstract

The effects of a coupling agent on the behavior of flax fiber-reinforced composites have been investigated by testing the specimens under both quasi-static (QS) indentation and high-velocity impact loading. The specimens are manufactured embedding a commercial flax fiber fabric in a polypropylene (PP) matrix, neat and premodified with a maleic anhydride-grafted PP, the latter acting as a coupling agent to enhance the interfacial adhesion. QS compressive tests were performed using a dynamometer testing machine equipped with a high-density polyethylene indenter having the same geometry of the projectile employed in the impact tests. The impact tests were conducted setting three different impact velocities. Digital image correlation maps of out-of-plane displacement were employed to compare the specimens with and without the coupling agent. The QS testing results indicate that the coupling agent has an enhancing influence on the bending stiffness of tested flax composites. The testing results show that the coupling agent improves the mechanical behavior by decreasing the out-of-plane displacement under impact loading. This approach gives rise to new materials potentially useful for applications where impact performance is desired while also providing an opportunity for the incorporation of natural fibers to produce a lightweight composite.

References

1.
Kaboglu
,
C.
,
Pimenta
,
S.
,
Morris
,
A.
, and
Dear
,
J. P.
,
2017
, “
The Effect of Different Types of Core Material on the Flexural Behavior of Sandwich Composites for Wind Turbine Blades
,”
J. Therm. Eng.
,
3
(
2
), pp.
1102
1109
.
2.
Pickering
,
K. L.
,
Efendy
,
M. G. A.
, and
Le
,
T. M.
,
2016
, “
A Review of Recent Developments in Natural Fiber Composites and Their Mechanical Performance
,”
Composites Part A
,
83
, pp.
98
112
.
3.
Živković
,
I.
,
Fragassa
,
C.
,
Pavlović
,
A.
, and
Brugo
,
T.
,
2017
, “
Influence of Moisture Absorption on the Impact Properties of Flax, Basalt and Hybrid Flax/Basalt Fiber Reinforced Green Composites
,”
Composites Part B
,
111
, pp.
148
164
.
4.
Mejri
,
M.
,
Toubal
,
L.
,
Cuillière
,
J. C.
, and
François
,
V.
,
2018
, “
Hygrothermal Aging Effects on Mechanical and Fatigue Behaviors of a Short-Natural-Fiber-Reinforced Composite
,”
Int. J. Fatigue
,
108
, pp.
96
108
.
5.
Yan
,
L.
,
Chouw
,
N.
, and
Jayaraman
,
K.
,
2014
, “
Flax Fiber and Its Composites—A Review
,”
Composites Part B
,
56
, pp.
296
317
.
6.
Kim
,
S.-J.
,
Moon
,
J.-B.
,
Kim
,
G.-H.
, and
Ha
,
C.-S.
,
2008
, “
Mechanical Properties of Polypropylene/Natural Fiber Composites: Comparison of Wood Fiber and Cotton Fiber
,”
Polym. Test.
,
27
(
7
), pp.
801
806
.
7.
Al-Oqla
,
F. M.
,
Sapuan
,
S. M.
,
Ishak
,
M. R.
, and
Nuraini
,
A. A.
,
2016
, “
A Decision-Making Model for Selecting the Most Appropriate Natural Fiber–Polypropylene-Based Composites for Automotive Applications
,”
J. Compos. Mater.
,
50
(
4
), pp.
543
556
.
8.
Liu
,
H.
,
Falzon
,
B. G.
,
Catalanotti
,
G.
, and
Tan
,
W.
,
2018
, “
An Experimental Method to Determine the Intralaminar Fracture Toughness of High-Strength Carbon-Fiber Reinforced Composite Aerostructures
,”
Aeronaut. J.
,
122
(
1255
), pp.
1352
1370
.
9.
Liu
,
H.
,
Falzon
,
B. G.
, and
Tan
,
W.
,
2018
, “
Experimental and Numerical Studies on the Impact Response of Damage-Tolerant Hybrid Unidirectional/Woven Carbon-Fiber Reinforced Composite Laminates
,”
Composites Part B
,
136
, pp.
101
118
.
10.
Bledzki
,
A. K.
,
Mamun
,
A. A.
,
Lucka-Gabor
,
M.
, and
Gutowski
,
V. S.
,
2008
, “
The Effects of Acetylation on Properties of Flax Fiber and Its Polypropylene Composites
,”
eXPRESS Polym. Lett.
,
2
(
6
), pp.
413
422
.
11.
Van den Oever
,
M. J. A.
,
Bos
,
H. L.
, and
Van Kemenade
,
M.
,
2000
, “
Influence of the Physical Structure of Flax Fibers on the Mechanical Properties of Flax Fiber Reinforced Polypropylene Composites
,”
Appl. Compos. Mater.
,
7
(
5–6
), pp.
387
402
.
12.
Van de Velde
,
K.
, and
Kiekens
,
P.
,
2003
, “
Effect of Material and Process Parameters on the Mechanical Properties of Unidirectional and Multidirectional Flax/Polypropylene Composites
,”
Compos. Struct.
,
62
(
3–4
), pp.
443
448
.
13.
Van de Velde
,
K.
, and
Kiekens
,
P.
,
2001
, “
Thermoplastic Polymers: Overview of Several Properties and Their Consequences in Flax Fiber Reinforced Composites
,”
Polym. Test.
,
20
(
8
), pp.
885
893
.
14.
Ngo
,
T. D.
,
Nofar
,
M.
,
Ton-That
,
M. T.
, and
Hu
,
W.
,
2016
, “
Flax and Its Thermoplastic Biocomposites
,”
J. Compos. Mater.
,
50
(
22
), pp.
3043
3051
.
15.
Cantero
,
G.
,
Arbelaiz
,
A.
,
Llano-Ponte
,
R.
, and
Mondragon
,
I.
,
2003
, “
Effects of Fibre Treatment on Wettability and Mechanical Behaviour of Flax/Polypropylene Composites
,”
Compos. Sci. Technol.
,
63
(
9
), pp.
1247
1254
.
16.
Van de Weyenberg
,
I.
,
Ivens
,
J.
,
De Coster
,
A.
,
Kino
,
B.
,
Baetens
,
E.
, and
Verpoest
,
I.
,
2003
, “
Influence of Processing and Chemical Treatment of Flax Fibers on Their Composites
,”
Compos. Sci. Technol.
,
63
(
9
), pp.
1241
1246
.
17.
Van de Weyenberg
,
I.
,
Truong
,
T. C.
,
Vangrimde
,
B.
, and
Verpoest
,
I.
,
2006
, “
Improving the Properties of UD Flax Fiber Reinforced Composites by Applying an Alkaline Fiber Treatment
,”
Composites Part A
,
37
(
9
), pp.
1368
1376
.
18.
Wang
,
B.
,
Tabil
,
L.
, and
Panigrahi
,
S.
,
2008
, “
Effects of Chemical Treatments on Mechanical and Physical Properties of Flax Fiber-Reinforced Composites
,”
Sci. Eng. Compos. Mater.
,
15
(
1
), pp.
43
58
.
19.
Huang
,
G.
, and
Liu
,
L.
,
2008
, “
Research on Properties of Thermoplastic Composites Reinforced by Flax Fabrics
,”
Mater. Des.
,
29
(
5
), pp.
1075
1079
.
20.
John
,
M. J.
, and
Anandjiwala
,
R. D.
,
2009
, “
Chemical Modification of Flax Reinforced Polypropylene Composites
,”
Composites Part A
,
40
(
4
), pp.
442
448
.
21.
Di Bella
,
G.
,
Fiore
,
V.
, and
Valenza
,
A.
,
2010
, “
Effect of Areal Weight and Chemical Treatment on the Mechanical Properties of Bidirectional Flax Fabrics Reinforced Composites
,”
Mater. Des.
,
31
(
9
), pp.
4098
4103
.
22.
Barkoula
,
N. M.
,
Garkhail
,,
S. K.
, and
Peijs
,
T.
,
2010
, “
Effect of Compounding and Injection Molding on the Mechanical Properties of Flax Fiber Polypropylene Composites
,”
J. Reinf. Plas. Compos.
,
29
(
9
), pp.
1366
1385
.
23.
Yu
,
T.
,
Wu
,
C.-M.
,
Wang
,
C.-J.
and
Rwei
,
S. -P.
,
2013
, “
Effects of Surface Modifications on the Interfacial Bonding of Flax/β-Polypropylene Composites
,”
Compos. Inter.
,
20
(
7
), pp.
483
496
.
24.
El-Sabbagh
,
A.
,
2014
, “
Effect of Coupling Agent on Natural Fibre in Natural Fibre/Polypropylene Composites on Mechanical and Thermal Behaviour
,”
Compos. Part B: Eng.
,
57
, pp.
126
135
.
25.
Rahman
,
M. Z.
,
Jayaraman
,
K.
, and
Mace
,
B. R.
,
2018
, “
Impact Energy Absorption of Flax Fiber-Reinforced Polypropylene Composites
,”
Polym. Compos.
,
39
(
11
), pp.
4165
4175
.
26.
Liu
,
H.
,
Liu
,
J.
,
Kaboglu
,
C.
,
Chai
,
H.
,
Kong
,
X.
,
Blackman
,
B. R. K.
,
Kinloch
,
A. J.
, and
Dear
,
J.P.
,
2019
, “
Experimental and Numerical Studies on the Behaviour of Fibre-Reinforced Composites Subjected to Soft Impact Loading
,”
Procedia Struct. Integr.
,
17
, pp.
992
1001
.
27.
Liu
,
H.
,
Liu
,
J.
,
Kaboglu
,
C.
,
Chai
,
H.
,
Kong
,
X.
,
Blackman
,
B. R. K.
,
Kinloch
,
A. J.
, and
Dear
,
J.P.
,
2020
, “
Experimental Investigations on the Effects of Projectile Hardness on the Impact Response of Fibre Reinforced Composite Laminates
,”
Int. J. Light Mater. Manuf.
,
3
, pp.
77
87
.
28.
Liu
,
H.
,
Liu
,
J.
,
Kaboglu
,
C.
,
Chai
,
H.
,
Kong
,
X.
,
Blackman
,
B. R. K.
,
Kinloch
,
A. J.
, and
Dear
,
J.P.
,
2020
, “
The Behaviour of Fibre-Reinforced Composites Subjected to a Soft Impact-Loading: An Experimental and Numerical Study
,”
Eng. Fail. Anal.
,
111
, p.
104448.
29.
Liu
,
H.
,
Falzon
,
B. G.
, and
Tan
,
W.
,
2018
, “
Predicting the Compression-After-Impact (CAI) Strength of Damage-Tolerant Hybrid Unidirectional/Woven Carbon-Fiber Reinforced Composite Laminates
,”
Composites Part A
,
105
, pp.
189
202
.
30.
Kaboglu
,
C.
,
Mohagheghian
,
I.
,
Zhou
,
J.
,
Guan
,
Z.
,
Cantwell
,
W.
,
John
,
S.
,
Blackman
,
B. R. K.
,
Kinloch
,
A. J.
, and
Dear
,
J. P.
,
2018
, “
High-Velocity Impact Deformation and Perforation of Fiber Metal Laminates
,”
J. Mater. Sci.
,
53
(
6
), pp.
4209
4228
.
31.
Zhuang
,
R.-C.
,
Burghardt
,
T.
,
Plonka
,
R.
,
Liu
,
J.-W.
, and
Mäder
,
E.
,
2010
, “
Affecting Glass Fiber Surfaces and Composite Properties by Two Stage Sizing Application
,”
eXPRESS Polym. Lett.
,
4
(
12
), pp.
798
808
.
You do not currently have access to this content.