This paper presents a general method for the analysis of any planar mechanism consisting of rigid links connected by revolute joints. The method combines a complex plane formulation [1] with the Dixon determinant procedure of Nielsen and Roth [2]. The result is simple to derive and implement, so in addition to providing numerical solutions, the approach facilitates analytical explorations. The procedure leads to a generalized eigenvalue problem of minimal size. Both input/output problems and the derivation of tracing curve equations are addressed, as is the extension of the method to treat slider joints.

1.
Wampler
,
C.
,
1999
, “
Solving the kinematics of planar mechanisms
,”
ASME J. Mech. Des.
,
121
, No.
3
, pp.
387
391
.
2.
Nielsen
,
J.
, and
Roth
,
B.
,
1999
, “
Solving the Input/Output Problem for Planar Mechanisms
,”
ASME J. Mech. Des.
,
121
, No.
2
, pp.
206
211
.
3.
Primrose
,
E. J. F.
,
Freudenstein
,
F.
, and
Roth
,
B.
,
1967
, “
Six-bar Motion (Parts I–III)
,”
Arch. Ration. Mech. Anal.
,
24
, pp.
22
77
.
4.
Innocenti
,
C.
,
1994
, “
Analytical-Form Position Analysis of the 7-Link Assur Kinematic Chain with Four Serially-Connected Ternary Links
,”
ASME J. Mech. Des.
,
116
, No.
2
, pp.
622
628
.
5.
Innocenti
,
C.
,
1995
, “
Polynomial Solution to the Position Analysis of the 7-link Assur Kinematic Chain with One Quaternary Link
,”
Mech. Mach. Theory
,
30
, No.
8
, pp.
1295
1303
.
6.
Han
,
L.
,
Liao
,
Q.
, and
Liang
,
C.
,
2000
, “
Closed-Form Displacement Analysis for a Nine-Link Barranov Truss or a Eight-Link Assur Group
,”
Mech. Mach. Theory
,
35
, No.
3
, pp.
379
390
.
7.
Dhingra
,
A. K.
,
Almadi
,
A. N.
, and
Kohli
,
D.
,
1999
, “
A Framework for Closed-Form Displacement Analysis of Planar Mechanisms
,”
ASME J. Mech. Des.
,
121
, No.
3
, pp.
392
401
.
8.
Lo¨sch, S., 1995, “Parallel Redundant Manipulators Based on Open and Closed Normal Assur Chains,” Computational Kinematics, J.-P. Merlet and B. Ravani, eds., Kluwer Academic Publ., Dordrecht, The Netherlands, pp. 251–260.
9.
Dhingra
,
A. K.
,
Almadi
,
A. N.
, and
Kohli
,
D.
,
2000
, “
A Gro¨bner-Sylvester Hybrid Method for Closed-Form Displacement Analysis of Mechanisms
,”
ASME J. Mech. Des.
,
122
, No.
4
, pp.
431
438
.
10.
Wampler
,
C.
,
Morgan
,
A.
, and
Sommese
,
A.
,
1990
, “
Numerical Continuation Methods for Solving Polynomial Systems Arising in Kinematics
,”
ASME J. Mech. Des.
,
112
, No.
1
, pp.
59
68
.
11.
Wampler, C., 1996, “Isotropic Coordinates, Circularity, and Bezout Numbers: Planar Kinematics from a New Perspective,” Proc. ASME Des. Eng. Tech. Conf., Aug. 18–22, Irvine, CA, Paper 96-DETC/Mech-1210.
12.
Waldron
,
K. J.
, and
Sreenivasen
,
S. V.
,
1996
, “
A Study of the Solvability of the Position Problem for Multi-Circuit Mechanisms by Way of Example of the Double Butterfly Linkage
,”
ASME J. Mech. Des.
,
118
, No.
3
, pp.
390
395
.
13.
Shen
,
H.
,
Ting
,
K.-L.
, and
Yang
,
T.
,
2000
, “
Configuration Analysis of Complex Multiloop Linkages and Manipulators
,”
Mech. Mach. Theory
,
35
, No.
3
, pp.
353
362
.
14.
Dixon
,
A. L.
,
1909
, “
The Eliminant of Three Quantics in Two Independent Variables
,”
Proc. London Math. Soc., Ser. 2
,
7
, pp.
49
69
.
You do not currently have access to this content.