The dynamic equations of motion of the constrained multibody mechanical system are mixed differential-algebraic equations (DAE). The DAE systems cannot be solved using numerical integration methods that are commonly used for solving ordinary differential equations. To solve this problem, Baumgarte proposed a constraint stabilization method in which a position and velocity terms were added in the second derivative of the constraint equation. The disadvantage of this method is that there is no reliable method for selecting the coefficients of the position and velocity terms. Improper selection of these coefficients can lead to erroneous results. In this study, stability analysis methods in digital control theory are used to solve this problem. Correct choice of the coefficients for the Runge-Kutta method is found.

1.
Haug, E. J., 1989, Computer Aided Kinematics and Dynamics of Mechanical System, Vol. I: Basic Methods. Allyn and Bacon, Massachusetts, USA.
2.
Wehage
,
R. A.
, and
Haug
,
E. J.
,
1982
, “
Generalized Coordinates Partitioning for Dimension Reduction in Analysis of Constrained Dynamic System
,”
ASME J. Mech. Des.
,
104
, pp.
247
255
.
3.
Haug
,
E. J.
, and
Yen
,
J.
,
1992
, “
Implicit Numerical Integration of Constrained Equations of Motion Via Generalized Coordinate Partitioning
,”
ASME J. Mech. Des.
,
114
, pp.
296
304
.
4.
Baumgarte
,
J.
,
1972
, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
1
, pp.
1
16
.
5.
Chang
,
C. O.
, and
Nikravesh
,
P. E.
,
1985
, “
An Adaptive Constraint Violation Stabilization Method for Dynamic Analysis of Mechanical Systems
,”
ASME J. Mech. Des.
,
17
, pp.
488
492
.
6.
Yoon
,
S.
,
Howe
,
R. M.
, and
Greenwood
,
D. T.
,
1995
, “
Stability and Accuracy Analysis of Baumgarte’s Constraint Stabilization Method
,”
ASME J. Mech. Des.
,
117
, pp.
446
453
.
7.
Chiou
,
J. C.
, and
Wu
,
S. D.
,
1998
, “
Constraint Violation Stabilization Using Input-Output Feedback Linearization in Multibody Dynamic Analysis
,”
J. Guid. Control Dyn.
,
21
(
2
), pp.
222
228
.
8.
Park
,
K. C.
, and
Chiou
,
J. C.
,
1988
, “
Stabilization of Computational Procedures for Constrained Dynamical Systems
,”
J. Guid. Control Dyn.
,
11
, pp.
365
370
.
9.
Bauchau
,
O. A.
,
Damilano
,
G.
, and
Theron
,
N. J.
,
1995
, “
Numerical Integration of Non-Linear Elastic Multi-Body Systems
,”
Int. J. Numer. Methods Eng.
,
38
, pp.
2727
2751
.
10.
Yoon
,
S.
,
Howe
,
R. M.
, and
Greenwood
,
D. T.
,
1994
, “
Geometric Elimination of Constraint Violations in Numerical Simulation of Lagrange Equations
,”
ASME J. Mech. Des.
,
116
, pp.
1058
1064
.
11.
Park
,
T.
,
1986
, “
A Hybrid Constraint Stabilization-Generalized Coordinate Partitioning Method for Machine Dynamics
,”
ASME J. Mech. Des.
,
108
(
2
), pp.
211
216
.
12.
Chiou
,
J. C.
,
Yang
,
J. Y.
, and
Wu
,
S. D.
,
1999
, “
Stability Analysis of Baumgarte Constraint Stabilization Technique in Multibody Dynamic Systems
,”
J. Guid. Control Dyn.
,
22
, No.
1
, pp.
160
162
.
13.
Wu
,
S. D.
,
Chiou
,
J. C.
, and
Lin
,
Y. C.
,
2000
, “
Modified Adams-Moulton Predictor Corrector Method in Solving Multibody Dynamic Systems
,”
Mechanics of Structures and Machines
28
(
2&3
), pp.
201
218
.
14.
Lin
,
S. T.
, and
Hong
,
M. C.
,
1998
, “
Stabilization Method for the Numerical Integration of Multibody Mechanical System
,”
ASME J. Mech. Des.
,
120
(
4
), pp.
565
572
.
15.
Lin
,
S. T.
, and
Huang
,
J. N.
,
2000
, “
Parameters Selection for Baumgarte’s Constraint Stabilization Method using the Predictor-Corrector Approach
,”
AIAA Journal of Guidance, Control, and Dynamics
23
(
3
), pp.
566
570
.
16.
Lin
,
S. T.
, and
Hong
,
M. C.
,
2001
, “
Stabilization Method for the Numerical Integration of Controlled Multibody Mechanical System: A Hybrid Integration Approach
,”
JSME International Journal Series C
44
(
1
), pp.
79
88
.
17.
Ogata, K., 1995, Discrete-Time Control Systems, 2nd Edition, Prentice-Hall, Englewood Cliffs, New Jersey.
You do not currently have access to this content.