This paper presents a closed-form formulation and geometrical interpretation of the derivatives of the Jacobian matrix of fully parallel robots with respect to the moving platforms’ position/orientation variables. Similar to the Jacobian matrix, these derivatives are proven to be also groups of lines that together with the lines of the instantaneous direct kinematics matrix govern the singularities of the active stiffness control. This geometric interpretation is utilized in an example of a planar 3 degrees-of-freedom redundant robot to determine its active stiffness control singularity.

1.
Merlet
,
J. P.
,
1989
, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Robot. Res.
,
8
(
5
), pp.
45
56
.
2.
Gosselin
,
C.
,
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
3.
Collins
,
C. L.
, and
Long
,
G. L.
,
1995
, “
The Singularity Analysis of an In-Parallel Hand Controller for Force-Reflected Teleoperation
,”
IEEE Trans. Rob. Autom.
,
11
(
5
), pp.
661
669
.
4.
Ben-Horin, R., 1997, “Criteria for Analysis of Parallel Robots,” Ph.D. dissertation, The Technion, Israel.
5.
Simaan, N., 1999, “Analysis and Synthesis of Parallel Robots for Medical Applications,” Master Thesis, Technion, Israel.
6.
Simaan
,
N.
, and
Shoham
,
M.
,
2001
, “
Singularity Analysis of a Class of Composite Serial In-Parallel Robots
,”
IEEE Trans. Rob. Autom.
,
17
(
3
), pp.
301
311
.
7.
Pottman
,
H.
,
Peternell
,
M.
, and
Ravani
,
B.
,
1999
, “
An Introduction to Line Geometry with Applications
,”
Comput.-Aided Des.
,
31
, pp.
3
16
.
8.
Hunt
,
K. H.
,
Samuel
,
A. E.
, and
McAree
,
P. R.
,
1991
, “
Special Configurations of Multi Freedom Grippers—A Kinematic Study
,”
Int. J. Robot. Res.
,
10
(
2
), pp.
123
134
.
9.
Dandurand
,
A.
,
1984
, “
The Rigidity of Compound Spatial Grid
,”
Structural Topology
,
10
, pp.
41
56
.
10.
Cleary, C., and Uebel, M., 1994, “Jacobian Formulation For A Novel 6-DOF Parallel Manipulator.” IEEE International Conference on Robotics and Automation, Vol. 3, pp. 2377–2382.
11.
Simaan, N., Glozman, D., and Shoham, M., 1998, “Design Considerations of New Six Degrees-Of-Freedom Parallel Robots,” IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1327–1333.
12.
Tsai, L-W., 1998, “The Jacobian Analysis of Parallel Manipulators Using Reciprocal Screws,” Advances in Robot Kinematics: Analysis and Control, Lenarc˘ic˘, J., and Husty, M. L., eds., pp. 327–336, Kluwer Academic Publishers.
13.
Tsai, L-W., 1999, Robot Analysis—The Mechanics of Serial and Parallel Manipulators, John Wiley & Sins, Inc.
14.
Dutre´, S., Bruyninckx, H., and De Schutter, J., 1997, “The Analytical Jacobian and Its Derivative for a Parallel Manipulator,” IEEE International Conference on Robotics and Automation, pp. 2961–2966.
15.
Merlet
,
J. P.
, and
Gosselin
,
C.
,
1991
, “
Nouvelle Architecture Pour Un Manipulateur Parallele A Six Degres De Liberte
,”
Mech. Mach. Theory
,
26
(
1
), pp.
77
90
.
16.
Duffy, J., 1996, Statics and Kinematics with Applications to Robotics (Chapters 4,5), Cambridge University Press.
17.
Yi., B. J., Freeman, R., and Tesar, D., 1989, “Open-Loop Stiffness Control of Overconstrained Mechanisms/Robotic Linkage Systems,” IEEE International Conference on Robotics and Automation, pp. 1340–1345.
18.
Kock, S., and Schumacher, W., 1998, “A Parallel x-y Manipulator with Actuation Redundancy for High-Speed and Active-Stiffness Applications,” IEEE International Conference on Robotics and Automation, Vol. 2, pp. 2295–2300.
19.
Yoshikawa, T., 1990, Foundation of Robotics Analysis and Control, MIT Press.
20.
Ma, O., and Angeles, J., 1991, “Architecture Singularities of Platform Manipulator,” IEEE Int. Conf. on Robotics and Automation, pp. 1542–1547.
21.
Pellegrini, M., 1997, “Ray Shooting and Lines in Space,” Handbook of Discrete and Computational Geometry, Goodman, J., O’Rourke, J., eds., CRC Press, pp. 599–612.
22.
Graustein, W. C., 1930, Introduction to Higher Geometry, The Macmillan Company.
23.
Sommerville, D. M. Y., 1934, Analytical Geometry of Three Dimensions, Cambridge Press.
24.
Hunt, K. H., 1978, Kinematic Geometry of Mechanisms, Clarendon Press, Oxford.
25.
Gosselin
,
C.
,
1990
, “
Stiffness Mapping for Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
377
382
.
26.
Yi, B. Ji., and Freeman, R. A., 1993, “Geometric Characteristics of Antagonistic Stiffness In Redundantly Actuated Mechanisms,” IEEE International Conference on Robotics and Automation, pp. 654–661.
27.
Yi, B. Ji, Freeman, R. A., and Tesar, D., 1992, “Force And Stiffness Transmission In Redundantly Actuated Mechanisms: The Case for a Spherical Shoulder Mechanism,” DE-Vol. 45, Robotics, Spatial Mechanisms and Mechanical Systems, pp. 163–172.
28.
Cho, W., Tesar, D., and Freeman, R. A., 1989, “The Dynamic Stiffness Modeling of General Robotic Manipulator Systems with Antagonistic Actuation,” IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1380–1387.
29.
Yi
,
B. J.
, and
Freeman
,
R. A.
,
1992
, “
Synthesis of Actively Adjustable Springs by Antagonistic Redundant Actuation
,”
ASME J. Dyn. Syst., Meas., Control
,
114
, pp.
454
461
.
30.
O’Brien, J. F., and Wen, J. T., 1999, “Redundant Actuation for Improving Kinematic Manipulability,” IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1520–1525.
31.
Ben-Israel, A., and Greville, Th. N., 1974, Generalized Inverses: Theory and Applications, John Wiley & Sons, New York.
You do not currently have access to this content.