This paper presents a novel hybrid genetic algorithm that has the ability of the genetic algorithms to avoid being trapped at local minimum while accelerating the speed of local search by using the fuzzy simplex algorithm. The new algorithm is labeled the hybrid fuzzy simplex genetic algorithm (HFSGA). Standard test problems are used to evaluate the efficiency of the algorithm. The algorithm is also applied successfully to several engineering design problems. The HFSGA generally results in a faster convergence toward extremum.

1.
Spendley
,
W.
,
Hext
,
G.
, and
Himsworth
,
F.
,
1962
, “
Sequential Application of Simplex Designs in Optimization and Evolutionary Operation
,”
Technometrics
,
4
, pp.
441
461
.
2.
Nelder
,
J.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
, pp.
308
313
.
3.
Rekalitis, V., Ravindaran, A., and Ragsdell, K. M., 1983, Engineering Optimization: Methods and Applications, Wiley-Interscience, New York.
4.
Hedlund
,
P.
, and
Gustavsson
,
A.
,
1999
, “
Design and Evaluation of an Effective Modified Simplex Method
,”
Anal. Chim. Acta
,
391
, pp.
257
267
.
5.
Trabia
,
M.
, and
Lu
,
X.
,
2001
, “
A Fuzzy Adaptive Simplex Search Optimization Algorithm
,”
ASME J. Mech. Des.
,
123
, pp.
216
225
.
6.
Gen, M., and Cheng, R., 1997, Genetic Algorithms & Engineering Design, Wiley Interscience, New York.
7.
Ishibuchi
,
H.
,
Yamamoto
,
N.
,
Murata
,
T.
, and
Tanaka
,
H.
,
1994
, “
Genetic Algorithms and Neighborhood Search Algorithms for Fuzzy Flowshop Problems
,”
Fuzzy Sets Syst.
,
67
, pp.
81
100
.
8.
Renders
,
J.
and
Flasse
,
S.
,
1999
, “
Hybrid Methods Using Genetic Algorithms for Global Optimization
,”
IEEE Trans. Syst. Man Cybern.
,
26
, pp.
243
258
.
9.
Sotiropoulos
,
D.
,
Stavropoulos
,
E.
, and
Vrahatis
,
M.
,
1997
, “
A New Hybrid Genetic Algorithm for Global Optimization
,”
Nonlinear Anal. Theory, Methods Appl.
,
30
, pp.
4529
4538
.
10.
Yen
,
J.
,
Liao
,
J.
, and
Randolph
,
D.
,
1998
, “
A Hybrid Approach to Modeling Metabolic Systems Using a Genetic Algorithm and Simplex Method
,”
IEEE Trans. Syst. Man Cybern.
,
28
, pp.
173
191
.
11.
Okamoto
,
M.
,
Nonaka
,
T.
,
Ochiai
,
S.
, and
Tominaga
,
D.
,
1998
, “
Nonlinear Numerical Optimization with Use of a Hybrid Genetic Algorithm Incorporating the Modified Powell Method
,”
Appl. Math. Comput.
,
91
, pp.
63
72
.
12.
Jwo
,
W.
,
Liu
,
C.
, and
Liu
,
C.
,
1999
, “
Large-Scale Optimal VAR Planning by Hybrid Simulated Annealing/Genetic Algorithm
,”
Int. J. Electr. Power Energy Syst.
,
21
, pp.
39
44
.
13.
Musil
,
M.
,
Wilmut
,
M.
, and
Chapman
,
N.
,
1999
, “
A Hybrid Simplex Genetic Algorithm for Estimating Geoacoustic Parameters Using Matched-Field Inversion
,”
IEEE J. Ocean. Eng.
,
24
, pp.
358
369
.
14.
Nassef, A. O., Hegazi, H. A., and Metwalli, S. M., 2000, “A Hybrid Genetic-Direct Search Algorithm for the Shape Optimization of Solid C-frame Cross-Sections,” Proceedings of the 26th Design Automation Conference.
15.
Michalewicz, Z., 1994, Genetic Algorithms+Data Structure=Evolutionary Programs, Springer-Verlag, New York.
16.
Haupt, R., and Haupt, S., 1998, Practical Genetic Algorithms, Wiley Interscience, New York.
17.
Teng, C., and Angeles, J., 1999, “A Sequential Quadratic-Programming Algorithm Using Orthogonal Decomposition with Gerschgorin Stabilization,” Proceedings of the 1999 ASME Design Engineering Technical Conferences.
18.
Lo, C., and Papalambros, P., 1990, “A Deterministic Global Design Optimization Method for Nonconvex Generalized Polynomial Problems,” Advances in Design Automation, ASME, New York, pp. 41–49.
19.
Ostermark
,
R.
,
1999
, “
Solving a Nonlinear Non-Convex Trim Loss Problem with a Genetic Hybrid Algorithm
,”
Computers & Operations Research
,
26
, pp.
623
635
.
You do not currently have access to this content.