An open research question is how to define a useful metric on the special Euclidean group SE(n) with respect to: (1) the choice of coordinate frames and (2) the units used to measure linear and angular distances that is useful for the synthesis and analysis of mechanical systems. We discuss a technique for approximating elements of SE(n) with elements of the special orthogonal group SO(n+1). This technique is based on using the singular value decomposition (SVD) and the polar decompositions (PD) of the homogeneous transform representation of the elements of SE(n). The embedding of the elements of SE(n) into SO(n+1) yields hyperdimensional rotations that approximate the rigid-body displacements. The bi-invariant metric on SO(n+1) is then used to measure the distance between any two displacements. The result is a left invariant PD based metric on SE(n).

1.
Kazerounian
,
K.
, and
Rastegar
,
J.
, 1992. “
Object Norms: A Class of Coordinate and Metric Independent Norms for Displacements
,”
Proc. of the ASME Design Engineering Technical Conferences
, Scotsdale, AZ, September 13–16.
2.
Larochelle
,
P.
, and
McCarthy
,
J. M.
, 1995. “
Planar Motion Synthesis Using an Approximate Bi-invariant Metric
,”
ASME J. Mech. Des.
1050-0472,
117
(
4
), pp.
646
651
.
3.
Tse
,
D. M.
, and
Larochelle
,
P. M.
, 2000. “
Approximating Spatial Locations with Spherical Orientations for Spherical Mechanism Design
,”
ASME J. Mech. Des.
1050-0472,
122
, pp.
457
463
.
4.
Gupta
,
K. C.
, 1997. “
Measures of Positional Error for a Rigid Body
,”
ASME J. Mech. Des.
1050-0472,
119
, pp.
346
349
.
5.
Park
,
F. C.
, 1995. “
Distance Metrics on the Rigid-body Motions with Applications to Mechanism Design
,”
ASME J. Mech. Des.
1050-0472,
117
(
1
), pp.
48
54
.
6.
Lin
,
Q.
, and
Burdick
,
J.
, 2000. “
Objective and Frame-Invariant Kinematic Metric Functions for Rigid Bodies
,”
Int. J. Robot. Res.
0278-3649,
19
(
6
), pp.
612
625
.
7.
Martinez
,
J. M. R.
, and
Duffy
,
J.
, 1995. “
On the Metrics of Rigid Body Displacements for Infinite and Finite Bodies
,”
ASME J. Mech. Des.
1050-0472,
117
, pp.
41
47
.
8.
Fanghela
,
P.
, and
Galletti
,
C.
, 1995. “
Metric Relations and Displacement Groups in Mechansims and Robot Kinematics
,”
ASME J. Mech. Des.
1050-0472,
117
(
3
), pp.
470
478
.
9.
Eberharter
,
J.
, and
Ravani
,
B.
, 2004. “
Local Metrics for Rigid Body Displacements
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
805
812
.
10.
Chirikjian
,
G. S.
, 1998. “
Convolution Metrics for Rigid Body Motion
,”
Proc. of the ASME Design Engineering Technical Conferences
, Atlanta, CA, September 13–16.
11.
Chirikjian
,
G. S.
, and
Zhou
,
S.
, 1998. “
Metrics on Motion and Deformation of Solid Models
,”
ASME J. Mech. Des.
1050-0472,
120
(
2
), pp.
252
261
.
12.
Belta
,
C.
, and
Kumar
,
V.
, 2002. “
An SVD-Based Projection Method for Interpolation on SE(3)
,”
IEEE Trans. Rob. Autom.
1042-296X,
18
(
3
), pp.
334
345
.
13.
Ravani
,
B.
, and
Roth
,
B.
, 1983. “
Motion Synthesis using Kinematic Mappings
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
, pp.
460
467
.
14.
Schilling
,
R. J.
, and
Lee
,
H.
, 1988.
Engineering Analysis- a Vector Space Approach
,
Wiley
, New York.
15.
McCarthy
,
J. M.
, 1983. “
Planar and Spatial Rigid Body Motion as Special Cases of Spherical and 3-Spherical Motion
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
, pp.
569
575
.
16.
Etzel
,
K.
, and
McCarthy
,
J. M.
, 1996. “
A Metric for Spatial Displacements using Biquaternions on SO(4)
,”
Proc. of the IEEE International Conference on Robotics and Automation
, Minneapolis, MN, April 22–28.
17.
Inonu
,
I.
, and
Wigner
,
E.
, 1953. “
On the Contraction of Groups and their Representations
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
39
(
6
), pp.
510
524
.
18.
Saletan
,
E.
, 1961. “
Contraction of Lie Groups
,”
J. Math. Phys.
0022-2488,
2
(
1
), pp.
1
21
.
19.
Shoemake
,
K.
, and
Duff
,
T.
, 1992. “
Matrix Animation and Polar Decomposition
,”
Proc. of Graphics Interface ’92
, pp.
258
264
, Vancouver, British Columbia, Canada, May 11–15.
20.
Larochelle
,
P.
,
Murray
,
A.
, and
Angeles
,
J.
, 2004. “
SVD and PD Based Projection Metrics on SE(n)
,”
Proc. On Advances in Robot Kinematics
, Sestri Levante, Italy, June 27–July 1.
21.
Hanson
,
R. J.
, and
Norris
,
M. J.
, 1981. “
Analysis of Measurements Based upon the Singular Value Decomposition
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
2
(
3
), pp.
308
313
.
22.
Paul
,
R.
, 1981.
Robot Manipulators: Mathematics, Programming, and Control
,
MIT Press
, Cambridge, MA.
23.
Faddeeva
,
V. N.
, 1959.
Computational Methods of Linear Algebra
.
Dover
, New York.
24.
Halmos
,
P. R.
, 1990.
Finite Dimensional Vector Spaces
,
Van Nostrand
, Reinhold, New York.
25.
Dubrulle
,
A. A.
, 2001. “
An Optimum Iteration for the Matrix Polar Decomposition
,”
Electron. Trans. Numer. Anal.
1097-4067,
8
, pp.
21
25
.
26.
Al-Widyan
,
K.
, and
Angeles
,
J.
, 2002. “
A Numerically Robust Algorithm to Solve the Five-Pose Burmester Problem
,”
Proc. of the ASME Design Engineering Technical Conferences
, Montréal, Canada, September 29–October 2.
27.
Greenwood
,
D. T.
, 2003.
Advanced Dynamics
,
Cambridge University Press
, Cambridge, UK.
28.
Angeles
,
J.
, 2003.
Fundamentals of Robotic Mechanical Systems
,
Springer
, New York.
29.
Angeles
,
J.
, 2005. “
Is there a Characteristic Length of a Rigid-body Displacement
,”
Proc. of the 2005 International Workshop on Computational Kinematics
, Cassino, Italy, May 4–6.
30.
Larochelle
,
P.
, 1999. “
On the Geometry of Approximate Bi-invariant Projective Displacement Metrics
,”
Proc. of the World Congress on the Theory of Machines and Mechanisms
, Oulu, Finland, June 20–24.
31.
Larochelle
,
P.
, and
Vance
,
J.
, 2000. “
Interactive Visualization of the Line Congruences Associated with Four Finite Spatial Positions
,”
Proceedings of the Symposium Commemorating the Legacy, Works, and Life of Sir Robert Stawell Ball upon the 100th Anniversary of the Publication of his Seminal Work A Treatise on the Theory of Screws
,
University of Cambridge
, Trinity College, UK, July 9–11.
You do not currently have access to this content.