This paper presents the problem formulation and design of compliant grip-and-move manipulators. Each manipulator is composed of two identical path generating compliant mechanisms such that it can grip an object and convey it from one point to another. The integration of both gripping and moving behaviors within a simple mechanism is accomplished by the use of compliant mechanisms, which generate paths that are symmetric. The automated synthesis of these symmetric path generating mechanisms is by a structural topology optimization approach. The problem of topology optimization of continuum structures is solved using a multiobjective genetic algorithm coupled with a morphological representation of geometry that efficiently defines the variable structural geometry upon a finite element grid. A graph-theoretic chromosome encoding together with compatible crossover and mutation operators are then applied to form an effective evolutionary optimization procedure. Two designs have been created and are presented in this paper, and some concluding remarks and future work are put forward.

1.
Howell
,
L. L.
, and
Midha
,
A.
, 1996, “
A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
118
(
1
), pp.
121
125
.
2.
Pio Belfiore
,
N.
, and
Pennestri
,
E.
, 1997, “
An Atlas of Linkage-Type Robotic Grippers
,”
Mech. Mach. Theory
0094-114X,
32
(
7
), pp.
811
833
.
3.
Tsai
,
Y. C.
,
Lei
,
S. H.
, and
Sudin
,
H.
, 2005, “
Design and Analysis of Planar Compliant Microgripper Based on Kinematic Approach
,”
J. Micromech. Microeng.
,
15
, pp.
143
156
. 0960-1317
4.
Goldfarb
,
M.
, and
Celanovic
,
N.
, 1999, “
A Flexure-Based Gripper for Small-Scale Manipulation
,”
Robotica
,
17
, pp.
181
187
. 0263-5747
5.
Bertetto
,
A.
, and
Ruggiu
,
M.
, 2003, “
A Two Degree of Freedom Gripper Actuated by SMA With Flexure Hinges
,”
J. Rob. Syst.
,
20
(
11
), pp.
649
657
. 0741-2223
6.
Chen
,
W.
, and
Lin
,
W.
, 2004. “
Design of a Flexure-Based Gripper Used in Optical Fiber Handling
,”
Proceedings of the 2004 IEEE Conference on Robotics, Automation and Mechatronics
,
Singapore
, Dec. 1–3, pp.
83
88
.
7.
Dollar
,
A.
, and
Howe
,
R.
, 2006, “
A Robust Compliant Grasper Via Shape Deposition Manufacturing
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
11
(
2
), pp.
154
161
.
8.
Chen
,
B. C.
,
Silva
,
E. C. N.
, and
Kikuchi
,
N.
, 2001, “
Advances in Computational Design and Optimization With Application to MEMS
,”
Int. J. Numer. Methods Eng.
0029-5981,
52
(
1-2
), pp.
23
62
.
9.
Larsen
,
U.
,
Signund
,
O.
, and
Bouwsta
,
S.
, 1997, “
Design and Fabrication of Compliant Micromechanisms and Structures With Negative Poisson’s Ratio
,”
J. Microelectromech. Syst.
1057-7157,
6
(
2
), pp.
99
106
.
10.
Pedersen
,
C.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
(
12
), pp.
2683
2705
.
11.
Buhl
,
T.
, 2002, “
Simultaneous Topology Optimization of Structure and Supports
,”
Struct. Multidiscip. Optim.
1615-147X,
23
(
5
), pp.
336
346
.
12.
Yoon
,
G.
,
Kim
,
Y.
,
Bendsoe
,
M.
, and
Sigmund
,
O.
, 2004, “
Hinge-Free Topology Optimization With Embedded Translation-Invariant Differentiable Wavelet Shrinkage
,”
Struct. Multidiscip. Optim.
1615-147X,
27
(
3
), pp.
139
150
.
13.
Joo
,
J.
, and
Kota
,
S.
, 2004, “
Topological Synthesis of Compliant Mechanisms Using Nonlinear Beam Elements
,”
Mech. Based Des. Struct. Mach.
1539-7734,
32
(
1
), pp.
17
38
.
14.
Min
,
S.
, and
Kim
,
Y.
, 2003. “
Topology Optimization of Compliant Mechanism With Geometrical Advantage
,”
Proceedings of the Third International Symposium on Speed-Up and Service Technology for Railway and MAGLEV Systems (STECH’03)
, Tokyo, Japan, Aug. 19–22, Vol.
47
, pp.
610
615
.
15.
Rahmatalla
,
S.
, and
Swan
,
C. C.
, 2005, “
Sparse Monolithic Compliant Mechanisms Using Continuum Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
(
12
), pp.
1579
1605
.
16.
Zhou
,
H.
, and
Ting
,
K. L.
, 2006, “
Shape and Size Synthesis of Compliant Mechanisms Using Wide Curve Theory
,”
ASME J. Mech. Des.
0161-8458,
128
(
3
), pp.
551
558
.
17.
Canfield
,
S.
,
Edinger
,
B.
,
Frecker
,
M.
, and
Koopmann
,
G.
, 1999. “
Design of Piezoelectric Inchworm Actuator and Compliant End-Effector for Minimally Invasive Surgery
,”
Proceedings of the 1999 Smart Structures and Materials: Smart Structures and Integrated Systems
, Newport Beach, CA, Mar. 1–4, Vol.
3668
, pp.
835
843
.
18.
Haddab
,
Y.
,
Chaillet
,
N.
, and
Bourjault
,
A.
, 2000. “
A Microgripper Using Smart Piezoelectric Actuators
,”
Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Takamatsu, Japan, October 30–November 5, 2000, Vol.
1
, pp.
659
664
.
19.
Oh
,
Y. S.
,
Lee
,
W. H.
,
Stephanou
,
H. E.
, and
Skidmore
,
G. D.
, 2003. “
Design, Optimization, and Experiments of Compliant Microgripper
,”
Proceedings of the 2003 ASME International Mechanical Engineering Congress and Exposition
,
Washington, DC
, Nov. 15–21, Vol.
5
, pp.
345
350
.
20.
Bordatchev
,
E.
, and
Nikumb
,
S.
, 2003. “
Microgripper: Design, Finite Element Analysis and Laser Microfabrication
,”
Proceedings of the International Conference on MEMS, NANO and Smart Systems
,
Banff, AL
, Canada, July 20–23, pp.
308
313
.
21.
Bernardoni
,
P.
,
Riwan
,
A.
,
Tsitsiris
,
H.
,
Millet
,
O.
,
Buchaillot
,
L.
,
Regnier
,
S.
, and
Bidaud
,
P.
, 2004. “
From the Mechanical Analysis of a Polyarticulated Microgripper to the Design of a Compliant Microgripper
,”
Proceedings of the Smart Structures and Materials 2004: Modeling, Signal Processing, and Control
,
San Diego
, Aug. 21–23.
22.
Chronis
,
N.
, and
Lee
,
L. P.
, 2005, “
Electrothermally Activated SU-8 Microgripper for Single Cell Manipulation in Solution
,”
J. Microelectromech. Syst.
1057-7157,
14
(
4
), pp.
857
863
.
23.
Frecker
,
M.
,
Powell
,
K.
, and
Haluck
,
R.
, 2005, “
Design of a Multifunctional Compliant Instrument for Minimally Invasive Surgery
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
6
), pp.
990
993
.
24.
Kota
,
S.
,
Lu
,
K.-J.
,
Kreiner
,
Z.
,
Trease
,
B.
,
Arenas
,
J.
, and
Geiger
,
J.
, 2005, “
Design and Application of Compliant Mechanisms for Surgical Tools
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
6
), pp.
981
989
.
25.
Shih
,
C. J.
, and
Lin
,
C. F.
, 2006, “
A Two-Stage Topological Optimum Design for Monolithic Compliant Microgripper Integrated With Flexure Hinges
,”
J. Phys.: Conf. Ser.
1742-6588,
34
, pp.
840
846
.
26.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2004, “
Topology Optimization for Synthesis of Contact-Aided Compliant Mechanisms Using Regularized Contact Modeling
,”
Comput. Struct.
0045-7949,
82
, pp.
1267
1290
.
27.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2007, “
Synthesis of Contact-Aided Compliant Mechanisms for Non-Smooth Path Generation
,”
Int. J. Numer. Methods Eng.
0029-5981,
69
, pp.
2564
2605
.
28.
Wang
,
N.
, and
Tai
,
K.
, 2006. “
A Structural Optimization Problem Formulation for Design of Compliant Gripper Using a Genetic Algorithm
,”
Proceedings of the ECCM-2006: III European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering
,
Lisbon, Portugal
, June 5–9, Paper No. 2638.
29.
Duysinx
,
P.
, and
Bendsoe
,
M. P.
, 1998, “
Topology Optimization of Continuum Structures With Local Stress Constraints
,”
Int. J. Numer. Methods Eng.
0029-5981,
43
(
8
), pp.
1453
1478
.
30.
Saxena
,
A.
, and
Ananthasuresh
,
G.
, 2001, “
Topology Optimization of Compliant Mechanisms With Strength Considerations
,”
Mech. Struct. Mach.
0890-5452,
29
(
2
), pp.
199
221
.
31.
Jakiela
,
M. J.
,
Chapman
,
C.
,
Duda
,
J.
,
Adewuya
,
A.
, and
Saitou
,
K.
, 2000, “
Continuum Structural Topology Design With Genetic Algorithms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
186
(
2-4
), pp.
339
356
.
32.
Hamda
,
H.
,
Jouve
,
F.
,
Lutton
,
E.
,
Schoenauer
,
M.
, and
Sebag
,
M.
, 2002, “
Compact Unstructured Representations for Evolutionary Design
,”
The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
,
16
(
2
), pp.
139
155
. 0924-669X
33.
Wang
,
S. Y.
, and
Tai
,
K.
, 2004, “
Graph Representation for Structural Topology Optimization Using Genetic Algorithms
,”
Comput. Struct.
,
82
(
20-21
), pp.
1609
1622
. 0045-7949
34.
Wang
,
S. Y.
, and
Tai
,
K.
, 2005, “
Structural Topology Design Optimization Using Genetic Algorithms With a Bit-Array Representation
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
36–38
), pp.
3749
3770
. 0045-7825
35.
Wang
,
S. Y.
,
Tai
,
K.
, and
Wang
,
M. Y.
, 2006, “
An Enhanced Genetic Algorithm for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
65
(
1
), pp.
18
44
.
36.
Parsons
,
R.
, and
Canfield
,
S.
, 2002, “
Developing Genetic Programming Techniques for the Design of Compliant Mechanisms
,”
Struct. Multidiscip. Optim.
1615-147X,
24
(
1
), pp.
78
86
.
37.
Saxena
,
A.
, 2005, “
Synthesis of Compliant Mechanisms for Path Generation Using Genetic Algorithm
,”
ASME J. Mech. Des.
0161-8458,
127
(
4
), pp.
745
752
.
38.
Zhou
,
H.
, and
Ting
,
K. L.
, 2005, “
Topological Synthesis of Compliant Mechanisms Using Spanning Tree Theory
,”
ASME J. Mech. Des.
0161-8458,
127
(
4
), pp.
753
759
.
39.
Lu
,
K. J.
, and
Kota
,
S.
, 2005, “
An Effective Method of Synthesizing Compliant Adaptive Structures Using Load Path Representation
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
(
4
), pp.
307
317
.
40.
Lu
,
K. J.
, and
Kota
,
S.
, 2006, “
Topology and Dimensional Synthesis of Compliant Mechanisms Using Discrete Optimization
,”
ASME J. Mech. Des.
0161-8458,
128
(
5
), pp.
1080
1091
.
41.
Prasad
,
J.
, and
Diaz
,
A. R.
, 2006, “
Synthesis of Bistable Periodic Structures Using Topology Optimization and a Genetic Algorithm
,”
ASME J. Mech. Des.
0161-8458,
128
(
6
), pp.
1298
1306
.
42.
Tai
,
K.
, and
Chee
,
T. H.
, 2000, “
Design of Structures and Compliant Mechanisms by Evolutionary Optimization of Morphological Representations of Topology
,”
ASME J. Mech. Des.
0161-8458,
122
(
4
), pp.
560
566
.
43.
Tai
,
K.
,
Cui
,
G. Y.
, and
Ray
,
T.
, 2002, “
Design Synthesis of Path Generating Compliant Mechanisms by Evolutionary Optimization of Topology and Shape
,”
ASME J. Mech. Des.
0161-8458,
124
(
3
), pp.
492
500
.
44.
Tai
,
K.
, and
Akhtar
,
S.
, 2005, “
Structural Topology Optimization Using a Genetic Algorithm With a Morphological Geometric Representation Scheme
,”
Struct. Multidiscip. Optim.
1615-147X,
30
(
2
), pp.
113
127
.
45.
Tai
,
K.
, and
Prasad
,
J.
, 2005. “
Multiobjective Topology Optimization Using a Genetic Algorithm and a Morphological Representation of Geometry
,”
Proceedings of the Sixth World Congress on Structural and Multidisciplinary Optimization
, Rio de Janeiro, Brazil, May 30–Jun. 3, Paper No. 1711.
46.
Tai
,
K.
, and
Prasad
,
J.
, 2007, “
Target-Matching Test Problem for Multiobjective Topology Optimization Using Genetic Algorithms
,”
Struct. Multidiscip. Optim.
1615-147X,
34
(
4
), pp.
333
345
.
47.
Ray
,
T.
,
Tai
,
K.
, and
Seow
,
K. C.
, 2001, “
Multiobjective Design Optimization by an Evolutionary Algorithm
,”
Eng. Optimiz.
,
33
(
4
), pp.
399
424
. 0305-215X
48.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
You do not currently have access to this content.