This paper proposes novel honeycomb tessellation and material-mask overlay methods to obtain optimal single-material compliant topologies free from checkerboard and point-flexure pathologies. The presence of strain-free rotation regions in rectangular cell based discretization is identified to be a cardinal cause for appearance of such singularities. With each hexagonal cell sharing an edge with its neighboring cells, strain-free displacements are not permitted anywhere in the continuum. The new material assignment approach manipulates material within a subregion of cells as opposed to a single cell thereby reducing the number of variables making optimization efficient. Cells are allowed to get filled with only the chosen material or they can remain void. Optimal solutions obtained are free from intermediate material states and can be manufactured requiring no material interpretation and less postprocessing. Though the hexagonal cells do not allow strain-free rotations, some subregions undergoing large strain deformations can still be present within the design. The proposed procedure is illustrated using three classical examples in compliant mechanisms solved using genetic algorithm.

1.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Ananthasuresh
,
G. K.
,
Kota
,
S.
, and
Kikuchi
,
N.
, 1994 “
Strategies for Systematic Synthesis of Compliant MEMS
,”
Proceedings of 1994 ASME Winter Annual Meeting
,
Chicago
, pp.
677
686
.
3.
Nishiwaki
,
S.
,
Frecker
,
M.
,
Min
,
S.
, and
Kikuchi
,
N.
, 1998, “
Topology Optimization of Compliant Mechanisms using the Homogenization Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
42
(
3
), pp.
535
559
.
4.
Yang
,
L.
,
Saitou
,
K.
, and
Kikuchi
,
N.
, 2004, “
Topology Optimization of Thermally Actuated Compliant Mechanisms Considering Time-Transient Effect
,”
Finite Elem. Anal. Design
0168-874X,
40
, pp.
1317
1331
.
5.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
, 1991, “
The COC Algorithm, Part II: Topological, Geometrical, and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
89
, pp.
309
336
.
6.
Mlejnik
,
H. P.
, and
Schirrmacher
,
R.
, 1993, “
An Engineering Approach to Optimal Material Distribution and Shape Finding
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
106
, pp.
1
26
.
7.
Bendsøe
,
M. P.
, 1995,
Optimization of Structural topology, Shape and Material
,
Springer
,
Berlin
.
8.
Sigmund
,
O.
, 1997 “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
0890-5452,
25
, pp.
495
526
.
9.
Larsen
,
U. D.
,
Sigmund
,
O.
, and
Bouwstra
,
S.
, 1997, “
Design and Fabrication of Compliant Micromechanisms and Structures With Negative Poisson’s Ratio
,”
J. Microelectromech. Syst.
1057-7157,
6
(
2
), pp.
99
106
.
10.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
, 2001, “
Topology Optimization of Nonlinear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
26–27
), pp.
3443
3459
.
11.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981
50
(
12
), pp.
2683
2706
.
12.
Sigmund
,
O.
, 2001, “
Design of Multiphysics Actuators Using Topology Optimization—Part I: One-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
49–50
), pp.
6577
6604
.
13.
Sigmund
,
O.
, 2001, “
Design of Multiphysics Actuators using Topology Optimization—Part II: Two-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
49–50
), pp.
6605
6627
.
14.
Sigmund
,
O.
, 1994, “
Design of Material Structures Using Topology Optimization
,” DCAMM Report S.69, Department of Solid Mechanics, Ph.D. thesis, DTU.
15.
Diaz
,
A.
, and
Sigmund
,
O.
, 1995, “
Checkerboard Patterns in Layout Optimization
,”
Struct. Optim.
0934-4373,
10
, pp.
40
45
.
16.
Jog
,
C. S.
, and
Haber
,
R. B.
, 1996, “
Stability of Finite Element Models for Distributed Parameter Optimization and Topology Design
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
130
, pp.
203
226
.
17.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2003, “
A Novel Formulation for the Design of Distributed Compliant Mechanisms
,”
Mech. Based Des. Struct. Mach.
1539-7734,
31
, pp.
151
179
.
18.
Poulsen
,
T. A.
, 2003, “
A New Scheme for Imposing Minimum Length Scale in Topology Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
, pp.
741
760
.
19.
Guest
,
J. K.
,
Prévost
,
J. H.
, and
Belytschko
,
T.
, 2004, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
, pp.
238
254
.
20.
Hoffman
,
P.
, 1998,
The Man Who Loved Only Numbers: The Story of Paul Erdos and the Search for Mathematical Truth
,
Hyperion
,
New York
.
21.
Tóth
,
L. F.
, 1964, “
What the bees Know and What They Do Not Know
,”
Bull. Am. Math. Soc.
0002-9904,
70
, pp.
468
481
.
22.
Bleicher
,
M. N.
, and
Toth
,
L. F.
, 1965, Two-Dimensional Honeycombs, American Mathematical Monthly 72, p.
969
.
23.
Hales
,
T. C.
, 2001 “
The Honeycomb Conjecture
,”
Discrete Comput. Geom.
0179-5376,
25
, pp.
1
22
.
24.
Weaire
,
D.
, and
Phelan
,
R.
, 1994, “
Optimal Design of Honeycombs
,”
Nature (London)
0028-0836,
367
, p.
123
.
25.
Saxena
,
R.
, and
Saxena
,
A.
, 2003, “
On Design of Electro-Thermally Compliant MEMS for Strength
,”
ASME Design Engineering Technical Conferences, Design Automation Conference
,
Chicago, IL
, Sept. 2–6, Paper No. DETC2002∕DAC-48807.
26.
Saxena
,
R.
, and
Saxena
,
A.
, 2003, “
On Honeycomb Parameterization for Topology Optimization of Compliant Mechanisms
,”
ASME Design Engineering Technical Conferences, Design Automation Conference
,
Chicago, IL
, Sept. 2–6, Paper No. DETC2002∕DAC-48806.
27.
Saxena
,
R.
, and
Saxena
,
A.
, 2007, “
On Honeycomb Representation and SIGMOID Material Assignment in Optimal Topology Synthesis of Compliant Mechanisms
,”
Finite Elem. Anal. Design
0168-874X,
43
(
14
), pp.
1082
1098
.
28.
Mankame
,
N. D.
, and
Saxena
,
A.
, 2007, “
Analysis of the Hex Cell Discretization for Topology Synthesis of Compliant Mechanisms
,”
ASME International Design Engineering Technical Conference
, Paper No. DETC 35244.
29.
Chapman
,
C. D.
,
Saitou
,
K.
, and
Jakiela
,
M. J.
, 1994, “
Genetic Algorithms as an Approach to Configuration and Topology Design
,”
ASME J. Mech. Des.
1050-0472,
116
, pp.
1005
1012
.
30.
Kane
,
C.
, and
Schoenauer
,
M.
, 1996, “
Topological Optimum Design Using Genetic Algorithms
,”
Contr. Cybernet.
0324-8569,
25
(
5
), pp.
1059
1088
.
31.
Jakiela
,
M. J.
,
Chapman
,
C.
,
Duda
,
J.
,
Adewuya
,
A.
, and
Saitou
,
K.
, 2000, “
Continuum Structural Topology Design With Genetic Algorithms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
186
, pp.
339
356
.
32.
Eschenauer
,
H. A.
, and
Olhoff
,
N.
, 2001, “
Topology Optimization of Continuum Structures: A Review
,”
Appl. Mech. Rev.
0003-6900,
54
(
4
), pp.
331
390
.
33.
Hull
,
P.
, and
Canfield
,
S.
, 2006, “
Optimal Synthesis of Compliant Mechanisms Using Subdivision and Commercial FEA
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
337
348
.
34.
Sethian
,
J. A.
, and
Wiegmann
,
A.
, 2000, “
Structural Boundary Via Level Set and Immersed Interface Methods
,”
J. Comput. Phys.
0021-9991,
163
(
2
), pp.
489
528
.
35.
Belytschko
,
T.
,
Xiao
,
S. P.
, and
Parimi
,
C.
, 2003, “
Topology Optimization With Implicit Functions and Regularization
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
, pp.
1177
1196
.
36.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
, 2003, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
227
246
.
37.
Chang
,
S. Y.
, and
Youn
,
S. K.
, 2006, “
Material Cloud Method—Its Mathematical Investigation and Numerical Application for 3D Engineering Design
,”
Int. J. Solids Struct.
0020-7683,
43
(
17
), pp.
5337
5354
.
38.
Goldberg
,
D. E.
, 2002, “
Genetic Algorithms in Search, Optimization & Machine Learning
,”
Addison-Wesley
,
Readin, MA
.
39.
Cox
,
E.
, 2005,
Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration
,
Morgan Kauffman
,
New York
.
40.
De Jong
,
K. A.
, 2006,
Evolutionary Computation, A Unified Approach
,
MIT
,
Cambridge, MA
.
41.
Parsons
,
R.
, and
Canfield
,
S. L.
, 2002, “
Developing Genetic Programming Techniques for the Design of Compliant Mechanisms
,”
Struct. Multidiscip. Optim.
1615-147X,
24
, pp.
78
86
.
42.
Saxena
,
A.
, 2005, “
Synthesis of Compliant Mechanisms for Path Generation Using Genetic Algorithm
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
1
8
.
43.
Saxena
,
A.
, 2005, “
Topology Design of Large Displacement Compliant Mechanisms With Multiple Materials and Multiple Output Ports
,”
Struct. Multidiscip. Optim.
1615-147X,
30
(
6
), pp.
477
490
.
44.
Rai
,
A. K.
,
Saxena
,
A.
, and
Mankame
,
N. D.
, 2007, “
Synthesis of Path Generating Compliant Mechanisms Using Initially Curved Frame Elements
,”
ASME J. Mech. Des.
1050-0472,
129
, pp.
1056
1063
.
45.
Kreyszig
,
E.
,
Advanced Engineering Mathematics
, 8th ed.,
Wiley
,
New York
.
46.
Frecker
,
M.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
N.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
1050-0472,
119
, pp.
238
245
.
47.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2000 “
On an Optimality Property of Compliant Topologies
,”
Struct. Multidiscip. Optim.
1615-147X,
19
, pp.
36
49
.
48.
Canfield
,
S.
,
Chlarson
,
D.
,
Shibakov
,
A.
,
Richardson
,
J.
, and
Saxena
,
A.
, 2007, “
Multi-Objective Optimization of Compliant Mechanisms Including Failure Theories
,”
ASME Design Engineering Technical Conferences
,
Las Vegas
, Sept., Paper No. DETC2007–35618.
You do not currently have access to this content.