A circular surface with a fixed radius can be swept out by moving a circle with its center following a curve, which acts as the spine curve. Based on a system of Euclidean invariants, the paper identifies those circular surfaces taking lines of curvature as generating circles and further explores the properties of the principal curvatures and Gaussian curvature of the tangent circular surfaces. The paper then applies the study to mechanism analysis by proving the necessary and sufficient condition for a circular surface to be generated by a serially connected CR, HR, or RR mechanism, where C joint can be visualized as a special H joint with a variable pitch of one degree of freedom. Following the analysis, this paper reveals for the first time the relationship between the invariants of a circular surface and the commonly used D-H parameters of CR, HR, and RR mechanisms.

1.
Pottmann
,
H.
, and
Wallner
,
J.
, 2001,
Computational Line Geometry
,
Springer
,
New York
, pp.
270
282
.
2.
Sasaki
,
S.
, 1955,
Differential Geometry
,
Kyolitsu
,
Tokyo
(in Japanese).
3.
McCarthy
,
J. M.
, and
Roth
,
B.
, 1981, “
The Curvature Theory of Line Trajectories in Spatial Kinematics
,”
ASME J. Mech. Des.
0161-8458,
103
(
4
), pp.
718
724
.
4.
McCarthy
,
J. M.
, 1987, “
The Instantaneous Kinematics of Line Trajectories in Terms of a Kinematic Mapping of Spatial Rigid Motion
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
109
(
1
), pp.
95
100
.
5.
McCarthy
,
J. M.
, 1987, “
On the Scalar and Dual Formulations of the Curvature Theory of Line Trajectories
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
109
(
1
), pp.
101
106
.
6.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 2002, “
Null-Space Construction Using Cofactors From a Screw-Algebra Context
,”
Proc. R. Soc. London, Ser. A
0950-1207,
458
(
2024
), pp.
1845
1866
.
7.
Bunduwongse
,
R.
, 1996, “
Curvature Theory of Single and Double DOF Pencil Trajectories
, Ph.D. thesis, Tennessee Technological University, Cookeville, TN.
8.
Ting
,
K. L.
,
Zhang
,
Y.
, and
Bunduwongse
,
R.
, 2005, “
Characterization and Coordination of Point-Line Trajectories
,”
ASME J. Mech. Des.
0161-8458,
127
(
3
), pp.
502
505
.
9.
Zhang
,
Y.
, and
Ting
,
K. L.
, 2005, “
Point-Line Distance Under Riemannian Metrics
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
092304
.
10.
Zhang
,
Y.
, and
Ting
,
K. L.
, 2004, “
On Point-Line Geometry and Displacement
,”
Mech. Mach. Theory
0094-114X,
39
(
10
), pp.
1033
1050
.
11.
Zhang
,
Y.
, and
Ting
,
K. L.
, 2007, “
On Higher-Order Point-Line and the Associated Rigid Body Motions
,”
ASME J. Mech. Des.
0161-8458,
129
(
2
), pp.
166
174
.
12.
Zhang
,
Y.
, and
Ting
,
K. L.
, 2004, “
On the Basis Screws and Screw Systems of Point-Line and Line Displacements
,”
ASME J. Mech. Des.
0161-8458,
126
(
1
), pp.
56
62
.
13.
Dai
,
J. S.
, 2006, “
A Historical Review of the Theoretical Development of Rigid Body Displacements From Rodrigues Parameters to the Finite Twist
,”
Mech. Mach. Theory
0094-114X,
41
(
1
), pp.
41
52
.
14.
Wang
,
D. L.
,
Liu
,
J.
, and
Xiao
,
D. Z.
, 2000, “
Geometrical Characteristics of Some Typical Spatial Constraints
,”
Mech. Mach. Theory
0094-114X,
35
(
10
), pp.
1413
1430
.
15.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Clarendon
,
Oxford
, pp.
270
273
.
16.
do Carmo
,
M. P.
, 1976,
Differential Geometry of Curves and Surfaces
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
17.
Lu
,
W.
, and
Pottmann
,
H.
, 1996, “
Pipe Surfaces With Rational Spine Curve Are Rational
,”
Comput. Aided Geom. Des.
0167-8396,
13
, pp.
621
628
.
18.
Patrikalakis
,
N. M.
, and
Maekawa
,
T.
, 2002,
Shape Interrogation for Computer Aided Design and Manufacturing
,
Springer-Verlag
,
Berlin
, pp.
353
365
.
19.
Shani
,
U.
, and
Ballard
,
D. H.
, 1984, “
Splines as Embedding for Generalized Cylinders
,”
Comput. Vis. Graph. Image Process.
0734-189X,
27
, pp.
129
156
.
20.
Farouki
,
R. T.
, and
Sverrisson
,
R.
, 1996, “
Approximation of Rolling-Ball Blends for Free-Form Parametric Surfaces
,”
Comput.-Aided Des.
0010-4485,
28
(
11
), pp.
871
878
.
21.
Pegna
,
J.
, and
Wilde
,
D. J.
, 1990, “
Spherical and Circular Blending of Functional Surfaces
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
112
(
2
), pp.
134
142
.
22.
Blackmore
,
D.
,
Leu
,
M. C.
, and
Wang
,
L. P.
, 1997, “
Sweep-Envelope Differential Equation Algorithm and Its Application to NC Machining Verification
,”
Comput. Aided Des.
,
29
(
9
), pp.
629
637
. 0010-4485
23.
Stasiak
,
A.
, and
Maddocks
,
J. H.
, 2000, “
Best Packing in Proteins and DNA
,”
Nature (London)
0028-0836,
406
, pp.
251
253
.
24.
Maritan
,
A.
,
Micheletti
,
C.
,
Trovato
,
A.
, and
Banavar
,
J. R.
, 2000, “
Optimal Shapes of Compact Strings
,”
Nature (London)
0028-0836,
406
, pp.
287
290
.
25.
Caglioti
,
V.
, and
Giusti
,
A.
, 2006, “
Reconstruction of Canal Surfaces From Single Images Under Exact Perspective
,”
ECCV 2006
, Vol.
1
,
Springer
,
Berlin
, pp.
289
300
, Paper No. LNCS 3951.
26.
Peternell
,
M.
, and
Pottmann
,
H.
, 1997, “
Computing Rational Parametrizations of Canal Surfaces
,”
J. Symb. Comput.
0747-7171,
23
, pp.
255
266
.
27.
Landsmann
,
G.
,
Schicho
,
J.
,
Winkler
,
F.
, and
Hillgarter
,
E.
, 2000, “
Symbolic Parametrization of Pipe and Canal Surfaces
,”
Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation
, St. Andrews, Scotland, pp.
202
208
.
28.
Xu
,
Z.
,
Feng
,
R.
, and
Sun
,
J.
, 2006, “
Analytic and Algebraic Properties of Canal Surfaces
,”
J. Comput. Appl. Math.
0377-0427,
195
, pp.
220
228
.
29.
Vogel
,
W. O.
, 1960, “
Eiflöchen, die von einer einparametrigen Schar kongruenter Kreise vollständig bedeckt werden
,”
Math. Nachr.
0025-584X,
22
, pp.
27
45
, in German.
30.
Vogel
,
W. O.
, 1962, “
Flächen, die von einer einparametrigen Schar kongruenter Kreise erzeugt werden
,”
Monatsh. Math.
0026-9255,
66
, pp.
61
78
, in German.
31.
Izumiya
,
S.
,
Saji
,
K.
, and
Takeuchi
,
N.
, 2005, “
Circular Surfaces
,”
Advances in Geometry
1615-715X,
7
(
2
) pp.
295
313
.
32.
Izumiya
,
S.
,
Saji
,
K.
, and
Takeuchi
,
N.
, 2005, “
Circular Surfaces
,” http://eprints.math.sci.hokudai.ac.jp/archive/00000984http://eprints.math.sci.hokudai.ac.jp/archive/00000984.
33.
Soni
,
A. H.
, and
Ting
,
K. L.
, 1983, “
Instantaneous Kinematics of a Plane in Spherical Motion
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
, pp.
560
568
.
34.
Ting
,
K. L.
, and
Soni
,
A. H.
, 1983 “
Instantaneous Kinematics of a Plane in Space Motion
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
, pp.
552
559
.
35.
Leapchuse
,
M.
, 1969,
Schaum’s Outline of Theory and Problems of Differential Geometry
,
McGraw-Hill
,
New York
, pp.
70
71
.
36.
Cartan
,
H.
, 1996,
Differential Forms
,
Dover
,
New York
, pp.
139
163
.
37.
Eisenhart
,
L. P.
, 1909,
A Treatise on the Differential Geometry of Curves and Surfaces
,
Ginn
,
Boston, MA
.
38.
Hilbert
,
D.
, and
Cohn-Vossen
,
S.
, 1952,
Geometry and the Imagination
,
AMS Chelsea
,
New York
.
39.
Tsai
,
L. W.
, 1999,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Wiley
,
New York
.
40.
Yao
,
L.
,
Dai
,
J. S.
,
Wei
,
G.
, and
Li
,
H.
, 2005, “
Geometric Modeling and Meshing Characteristics of the Toroidal Drive
,”
ASME J. Mech. Des.
0161-8458,
127
(
5
), pp.
988
996
.
41.
Yao
,
L.
,
Dai
,
J. S.
, and
Wei
,
G.
, 2006, “
Error Analysis and Compensation for Meshing Contact of Toroidal Drives
,”
ASME J. Mech. Des.
0161-8458,
128
(
3
), pp.
610
617
.
42.
Dai
,
J. S.
, and
Wang
,
D.
, 2007, “
Geometric Analysis and Synthesis of the Metamorphic Robotic Hand
,”
ASME J. Mech. Des.
0161-8458,
129
(
11
), pp.
1191
1197
.
You do not currently have access to this content.