Biology is recognized as an excellent source of analogies and stimuli for engineering design. Previous work focused on the systematic identification of relevant biological analogies by searching for instances of functional keywords in biological information in natural-language format. This past work revealed that engineering keywords could not always be used to identify the most relevant biological analogies as the vocabularies between biology and engineering are sufficiently distinct. Therefore, a retrieval algorithm was developed to identify potential biologically meaningful keywords that are more effective in searching biological text than corresponding engineering keywords. In our current work, we applied and refined the retrieval algorithm to translate functional terms of the functional basis into biologically meaningful keywords. The functional basis is widely accepted as a standardized representation of engineering product functionality. Therefore, our keywords could serve as a thesaurus for engineers to find biological analogies relevant to their design problems. We also describe specific semantic relationships that can be used to identify biologically meaningful keywords in excerpts describing biological phenomena. These semantic relations were applied as criteria to identify the most useful biologically meaningful keywords. Through a preliminary validation experiment, we observed that different translators were able to apply the criteria to identify biologically meaningful keywords with a high degree of agreement to those identified by the authors. In addition, we describe how fourth-year undergraduate mechanical engineering students used the biologically meaningful keywords to develop concepts for their design projects.

1.
Chiu
,
I.
, and
Shu
,
L. H.
, 2005, “
Bridging Cross-Domain Terminology for Biomimetic Design
,”
ASME
Paper No. DETC2005-93101, Long Beach, CA.
2.
Hon
,
K. K. B.
, and
Zeiner
,
J.
, 2004, “
Knowledge Brokering for Assisting Generation of Automotive Product Design
,”
CIRP Ann.
0007-8506,
53
(
1
), pp.
159
162
.
3.
Chiu
,
I.
, and
Shu
,
L. H.
, 2007, “
Biomimetic Design Through Natural Language Analysis to Facilitate Cross-domain Information Retrieval
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
21
, pp.
45
59
.
4.
Stone
,
R. B.
, and
Wood
,
K. L.
, 2000, “
Development of a Functional Basis for Design
,”
ASME J. Mech. Des.
0161-8458,
122
, pp.
359
369
.
5.
Hirtz
,
J.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
, 2002, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,” NIST Technical Note, 1447.
6.
Mak
,
T. W.
, and
Shu
,
L. H.
, 2008, “
Using Descriptions of Biological Phenomena for Idea Generation
,”
Res. Eng. Des.
0934-9839,
19
, pp.
21
28
.
7.
Nagel
,
R. L.
,
Midha
,
P. A.
,
Tinsley
,
A.
,
Stone
,
R. B.
,
McAdams
,
D. A.
, and
Shu
,
L. H.
, 2008, “
Exploring the Use of Functional Models in Biomimetic Conceptual Design
,”
ASME J. Mech. Des.
0161-8458,
130
, pp.
121102
.
9.
Liu
,
Y.
,
Scheuermann
,
P.
,
Li
,
X.
, and
Zhu
,
X.
, 2007, “
Using WordNet to Disambiguate Word Senses for Text Classification
,”
ICCS 2007
, Part III, LNCS 4489, pp.
780
788
.
11.
Goel
,
A. K.
, 1997, “
Design, Analogy and Creativity
,”
IEEE Intell. Syst.
1094-7167,
12
, pp.
62
70
.
12.
Gentner
,
D.
,
Holyoak
,
K. J.
, and
Kokinov
,
B. K.
, 2001,
The Analogical Mind
,
The MIT Press
,
Cambridge, MA
.
13.
Brown
,
D. C.
, 2008, “
Guiding Computational Design Creativity Research
,”
Proceedings of the NSF International Workshop on Studying Design Creativity ’08
, University of Provence, France.
14.
Bonnardel
,
N.
, 2000, “
Towards Understanding and Supporting Creativity in Design: Analogies in a Constrained Cognitive Environment
,”
Int. J. Uncertainty, Fuzziness Knowledge-Based Syst.
0218-4885,
13
, pp.
505
513
.
15.
Benami
,
O.
, and
Jin
,
Y.
, 2002, “
Creative Stimulation in Conceptual Design
,”
ASME
Paper No. DETC2002/DTM-34023, Montreal, QC, Canada.
16.
Tseng
,
I.
,
Moss
,
J.
,
Cagen
,
J.
, and
Kotovsky
,
K.
, 2008, “
The Role of Timing and Analogical Similarity in the Stimulation of Idea Generation in Design
,”
Des. Stud.
0142-694X,
29
, pp.
203
221
.
17.
Holyoak
,
K. J.
, and
Thagard
,
P.
, 1996,
Mental Leaps
,
The MIT Press
,
Cambridge, MA
.
18.
Gordon
,
W. J. J.
, 1961,
Synectics
,
Harper & Row
,
New York
.
19.
Singh
,
V.
,
Skiles
,
S. M.
,
Krager
,
J. E.
,
Wood
,
K. L.
,
Jensen
,
D.
, and
Sierakowski
,
R.
, 2009, “
Innovations in Design Through Transformation: A Fundamental Study of Transformation Principles
,”
ASME J. Mech. Des.
0161-8458,
131
, p.
081010
.
20.
Wilson
,
J. O.
, and
Rosen
,
D.
, 2007, “
Systematic Reverse Engineering of Biological Systems
,”
ASME
Paper No. DETC2007/DETC-35395, Las Vegas, NV.
21.
Bar-Cohen
,
Y.
, 2006, “
Biomimetics—Using Nature to Inspire Human Innovation
,”
Bioinspir. Biomim.
,
1
, pp.
P1
12
.
22.
Vincent
,
J.
, 2006, “
Biomimetics: Its Practice and Theory
,”
J. R. Soc., Interface
1742-5689,
3
, pp.
471
482
.
23.
Otto
,
K.
, and
Wood
,
K. L.
, 2001,
Product Design: Techniques in Reverse Engineering and New Product Development
,
Prentice Hall
,
Upper Saddle River, NJ
.
24.
Rebholz-Schuhmann
,
D.
,
Kirsch
,
H.
, and
Couto
,
F.
, 2005, “
Facts From Text—Is Text Mining Ready to Deliver?
PLoS Biol.
1545-7885,
3
(
2
), p.
e65
.
25.
Vakili
,
V.
, and
Shu
,
L. H.
, 2001, “
Towards Biomimetic Concept Generation
,”
ASME
Paper No. DETC2001/DTM-21715, Pittsburg, PA.
26.
Vincent
,
J.
, 2003, “
Biomimetic Engineering
,”
European Workshop on Smart Structures in Engineering and Technology, Proceedings of SPIE
,
B.
Culshaw
, ed., Vol.
4763
, pp.
16
30
.
27.
Hacco
,
E.
, and
Shu
,
L. H.
, 2002, “
Biomimetic Concept Generation Applied to Design for Remanufacture
,”
ASME
Paper No. DETC2002/DFM-34177, Montreal, QC, Canada.
28.
Shu
,
L. H.
,
Hansen
,
H. N.
,
Gegeckaite
,
A.
,
Moon
,
J.
, and
Chan
,
C.
, 2006, “
Case Study in Biomimetic Design: Handling and Assembly of Microparts
,”
Proceedings of IDETC/CIE
, Philadelphia, PA, Paper No. DETC2006/DFM-99398.
29.
Davidson
,
M.
,
Blight
,
D.
,
Maloney
,
N.
,
McKnight
,
C.
,
Young
,
W.
,
Shu
,
L. H.
,
Potvin
,
M. J.
, and
Warkentin
,
A.
, 2009, “
Biomimetic Design of a Multi-Layered Dust Protection System for Optical Instruments Operating in the Lunar Environment
,”
The Sixth International Conference on Innovation and Practices in Engineering Design and Engineering Education
, Hamilton, ON, Jul. 27–29.
30.
Purves
,
W. K.
,
Sadava
,
D.
,
Orians
,
G. H.
, and
Heller
,
H. C.
, 2001,
Life, The Science of Biology
, 6th ed.,
Sinauer Associates
,
Sunderland, MA
.
31.
2007,
Oxford Dictionary and Thesaurus
,
M.
Waite
, ed.,
Oxford University Press
,
New York
.
32.
Merriam-Webster Online, 2007, accessed at http://www.m-w.com/http://www.m-w.com/
33.
Markopoulos
,
P.
,
Read
,
J. C.
,
MacFarlane
,
S.
, and
Hoysniemi
,
J.
, 2008, “
Evaluating Children’s Interactive Products
,”
Principles and Practices for Interaction Designers
,
Morgan Kaufmann
,
Burlington, MA
.
34.
Clement
,
C. A.
, and
Gentner
,
D.
, 1991, “
Systematicity as a Selection Constraint in Analogical Mapping
,”
Cogn. Sci.
0364-0213,
15
, pp.
89
132
.
35.
Cheong
,
H.
, and
Shu
,
L. H.
, 2009, “
Effective Analogical Transfer Using Biological Descriptions Retrieved With Functional and Biologically Meaningful Keywords
,”
ASME
Paper No. DETC2009/DTM-86680, San Diego, CA.
36.
Vattam
,
S.
,
Helms
,
M.
, and
Goel
,
A.
, 2008, “
Compound Analogical Design: Interaction between Problem Decomposition and Analogical Transfer in Biologically Inspired Design
,”
Proceedings of the Third International Conference on Design Computing and Cognition
, Atlanta, GA.
37.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B. S.
, 2005, “
A Functional Representation for Aiding Biomimetic and Artificial Inspiration of New Ideas
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
19
, pp.
113
132
.
38.
Lenau
,
T.
,
Cheong
,
H.
, and
Shu
,
L. H.
, 2008, “
Sensing in Nature: Using Biomimetics for Design of Sensors
,”
Sens. Rev.
0260-2288,
28
(
4
), pp.
311
316
.
You do not currently have access to this content.