Over the past few decades, folding paper has extended beyond the origami deployable applications to reach the engineering field. Nevertheless, mechanical information about paper behavior is still lacking, especially during folding/unfolding. This article proposes an approach to characterize the paper fold behavior in order to extract the material data that will be needed for the simulation of folding and to go a step further the single kinematics of origami mechanisms. The model developed herein from simple experiments for the fold behavior relies on a macroscopic local hinge with a nonlinear torsional spring. Though validated with only straight folds, the model is still applicable in the case of curved folds thanks to the locality principle of the mechanical behavior. The influence of both the folding angle and the fold length is extracted automatically from a set of experimental values exhibiting a deterministic behavior and a variability due to the folding process. The goal is also to propose a methodology that may extend the simple case of the paper crease, or even the case of thin material sheets, and may be adapted to other identification problems.

References

1.
Chen
,
Y.
, and
You
,
Z.
,
2007
, “
Square Deployable Frames for Space Applications. Part 2: Realization
,”
Proc. Inst. Mech. Eng., Part G
,
221
(
1
), pp.
37
45
.
2.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
3.
Buri
,
H.
, and
Weinand
,
Y.
,
2008
, “
ORIGAMI—Folded Plate Structures, Architecture
,”
10th World Conference on Timber Engineering
(
WCTE
),
Miyazaki, Japan
, June 2–5, pp.
2090
2097
.
4.
Gioia
,
F.
,
Dureisseix
,
D.
,
Motro
,
R.
, and
Maurin
,
B.
,
2012
, “
Design and Analysis of a Foldable/Unfoldable Corrugated Architectural Curved Envelop
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031003
.
5.
You
,
Z.
, and
Kuribayashi
,
K.
,
2006
, “
Expandable Tubes With Negative Poisson's Ratio and Their Application in Medicine
,”
Origami4: Fourth International Meeting of Origami Science, Mathematics, and Education
,
R.
Lang
, ed., Pasadena, CA, Sept. 8–10,
A K Peters/CRC Press
,
Wellesley, MA
, pp.
117
127
.
6.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng. A
,
419
(
1–2
), pp.
131
137
.
7.
Vincent
,
J. F. V.
,
2000
, “
Deployable Structures in Nature: Potential for Biomimicking
,”
Proc. Inst. Mech. Eng., Part C
,
214
(
1
), pp.
1
10
.
8.
Kobayashi
,
H.
,
Kresling
,
B.
, and
Vincent
,
J. F.
,
1998
, “
The Geometry of Unfolding Tree Leaves
,”
Proc. R. Soc. London, Ser. B
,
265
(
1391
), pp.
147
154
.
9.
Resch
,
R.
,
1992
, “
The Ron Resch Paper and Stick Film (Video)
, Presentation of His Work Between 1960 and 1966,” Last accessed May 12, 2014, http://vimeo.com/36122966
10.
Gjerde
,
E.
,
2009
,
Origami Tessellations: Awe-Inspiring Geometric Designs
,
A K Peters
,
Wellesley, MA
.
11.
Tachi
,
T.
,
2013
, “
Designing Freeform Origami Tessellations by Generalizing Resch's Patterns
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111006
.
12.
Dureisseix
,
D.
,
2012
, “
An Overview of Mechanisms and Patterns With Origami
,”
Int. J. Space Struct.
,
27
(
1
), pp.
1
14
.
13.
Lechenault
,
F.
,
Thiria
,
B.
, and
Adda-Bedia
,
M.
,
2014
, “
Mechanical Response of a Creased Sheet
,”
Phys. Rev. Lett.
,
112
(
24
), p.
244301
.
14.
Silverberg
,
J. L.
,
Na
,
J.-H.
,
Evans
,
A. A.
,
Liu
,
B.
,
Hull
,
T. C.
,
Santangelo
,
C. D.
,
Lang
,
R. J.
,
Hayward
,
R. C.
, and
Cohen
,
I.
,
2015
, “
Origami Structures With a Critical Transition to Bistability Arising From Hidden Degrees of Freedom
,”
Nat. Mater.
,
14
(
4
), pp.
389
393
.
15.
ISO 8791-4
,
2007
,
Paper and Board—Determination of Roughness/Smoothness (Air Leak Methods)—Part 4: Print-Surf Method
, 2nd ed.,
ISO
,
Geneva, Switzerland
.
16.
ISO 5633
,
1983
,
Paper and Board—Determination of Resistance to Water Penetration
, 1st ed.,
ISO
,
Geneva, Switzerland
.
17.
ISO 5626
,
1993
,
Paper—Determination of Folding Endurance
, 2nd ed.,
International Organization for Standardization (ISO)
,
Geneva, Switzerland
.
18.
Sampson
,
W. W.
,
2009
, “
Materials Properties of Paper as Influenced by Its Fibrous Architecture
,”
Int. Mater. Rev.
,
54
(
3
), pp.
134
156
.
19.
Réthoré
,
J.
,
Gravouil
,
A.
,
Morestin
,
F.
, and
Combescure
,
A.
,
2005
, “
Estimation of Mixed-Mode Stress Intensity Factors Using Digital Image Correlation and an Interaction Integral
,”
Int. J. Fracture
,
132
(
1
), pp.
65
79
.
20.
Avril
,
S.
,
Bonnet
,
M.
,
Bretelle
,
A.-S.
,
Grédiac
,
M.
,
Hild
,
F.
,
Ienny
,
P.
,
Latourte
,
F.
,
Lemosse
,
D.
,
Pagano
,
S.
,
Pagnacco
,
E.
, and
Pierron
,
F.
,
2008
, “
Overview of Identification Methods of Mechanical Parameters Based on Full-Field Measurements
,”
Exp. Mech.
,
48
(
4
), pp.
381
402
.
21.
Dureisseix
,
D.
,
Colmars
,
J.
,
Baldit
,
A.
,
Morestin
,
F.
, and
Maigre
,
H.
,
2011
, “
Follow-Up of a Panel Restoration Procedure Through Image Correlation and Finite Element Modeling
,”
Int. J. Solid Struct.
,
48
(
6
), pp.
1024
1033
.
22.
Giampieri
,
A.
,
Perego
,
U.
, and
Borsari
,
R.
,
2011
, “
A Constitutive Model for the Mechanical Response of the Folding of Creased Paperboard
,”
Int. J. Solid Struct.
,
48
(16–17), pp.
2275
2287
.
23.
Huffman
,
D. A.
,
1976
, “
Curvature and Creases: A Primer on Paper
,”
IEEE Trans. Comput.
,
C-25
(
10
), pp.
1010
1019
.
24.
Demaine
,
E. D.
,
Demaine
,
M. L.
,
Koschitz
,
D.
, and
Tachi
,
T.
,
2011
, “
Curved Crease Folding: A Review on Art, Design and Mathematics
,”
IABSE-IASS
Symposium: Taller, Longer, Lighter
,
London, UK
, Sept. 20–23, pp.
20
30
.
25.
Dias
,
M. A.
, and
Santangelo
,
C. D.
,
2012
, “
The Shape and Mechanics of Curved-Fold Origami Structures
,”
Europhys. Lett.
,
100
(
5
), p.
54005
.
26.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
2012
,
Matrix Computations
, 4th ed.,
The Johns Hopkins University Press
,
Baltimore, MD
.
27.
Eckart
,
C.
, and
Young
,
G.
,
1936
, “
The Approximation of One Matrix by Another of Lower Rank
,”
Psychometrika
,
1
(
3
), pp.
211
218
.
28.
Everson
,
R.
, and
Sirovich
,
L.
,
1995
, “
The Karhunen–Loeve Procedure for Gappy Data
,”
J. Opt. Soc. Am. A
,
12
(
8
), pp.
1657
1664
.
29.
Lee
,
K.
, and
Mavris
,
D. N.
,
2010
, “
Unifying Perspective for Gappy Proper Orthogonal Decomposition and Probabilistic Principal Component Analysis
,”
AIAA J.
,
48
(
6
), pp.
1117
1129
.
30.
Golub
,
G. H.
,
Hansen
,
P. C.
, and
O'Leary
,
D. P.
,
1999
, “
Tikhonov Regularization and Total Least Squares
,”
SIAM J. Matrix Anal. Appl.
,
21
(
1
), pp.
185
194
.
31.
Barbier
,
C.
,
Larsson
,
P.-L.
, and
Östlund
,
S.
,
2006
, “
On the Effect of High Anisotropy at Folding of Coated Papers
,”
Compos. Struct.
,
72
(
3
), pp.
330
338
.
32.
Rolland du Roscoat
,
S.
,
Decain
,
M.
,
Thibault
,
X.
,
Geindreau
,
C.
, and
Bloch
,
J.-F.
,
2007
, “
Estimation of Microstructural Properties From Synchrotron X-Ray Microtomography and Determination of the REV in Paper Materials
,”
Acta Mater.
,
55
(
8
), pp.
2841
2850
.
33.
Huang
,
H.
,
Hagman
,
A.
, and
Nygårds
,
M.
,
2014
, “
Quasi Static Analysis of Creasing and Folding for Three Paperboards
,”
Mech. Mater.
,
69
(
1
), pp.
11
34
.
34.
Abbott
,
A. C.
,
Buskohl
,
P. R.
,
Joo
,
J. J.
,
Reich
,
G. W.
, and
Vaia
,
R. A.
,
2014
, “
Characterization of Creases in Polymers for Adaptive Origami Structures
,”
ASME
Paper No. SMASIS2014-7480.
35.
Francis
,
K. C.
,
Blanch
,
J. E.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Origami-Like Creases in Sheet Materials for Compliant Mechanism Design
,”
Mech. Sci.
,
4
(
2
), pp.
371
380
.
You do not currently have access to this content.