A method is presented to optimize the shape and size of a passive, energy-storing prosthetic foot using the lower leg trajectory error (LLTE) as the design objective. The LLTE is defined as the root-mean-square error between the lower leg trajectory calculated for a given prosthetic foot's deformed shape under typical ground reaction forces (GRFs), and a target physiological lower leg trajectory obtained from published gait data for able-bodied walking. Using the LLTE as a design objective creates a quantitative connection between the mechanical design of a prosthetic foot (stiffness and geometry) and its anticipated biomechanical performance. The authors' prior work has shown that feet with optimized, low LLTE values can accurately replicate physiological kinematics and kinetics. The size and shape of a single-part compliant prosthetic foot made out of nylon 6/6 were optimized for minimum LLTE using a wide Bezier curve to describe its geometry, with constraints to produce only shapes that could fit within a physiological foot's geometric envelope. Given its single part architecture, the foot could be cost effectively manufactured with injection molding, extrusion, or three-dimensional printing. Load testing of the foot showed that its maximum deflection was within 0.3 cm (9%) of finite element analysis (FEA) predictions, ensuring the constitutive behavior was accurately characterized. Prototypes were tested on six below-knee amputees in India—the target users for this technology—to obtain qualitative feedback, which was overall positive and confirmed the foot is ready for extended field trials.

References

1.
Arya
,
A. P.
,
Lees
,
A.
,
Nirula
,
H. C.
, and
Klenerman
,
L.
,
1995
, “
A Biomechanical Comparison of the SACH, Seattle and Jaipur Feet Using Ground Reaction Forces
,”
Prosthet. Orthot. Int.
,
19
(1), pp.
37
45
. http://journals.sagepub.com/doi/abs/10.3109/03093649509078230
2.
Nederhand
,
M. J.
,
Van Asseldonk
,
E. H. F.
,
van der Kooij
,
H.
, and
Rietman
,
H. S.
,
2012
, “
Dynamic Balance Control (DBC) in Lower Leg Amputee Subjects; Contribution of the Regulatory Activity of the Prosthesis Side
,”
Clin. Biomech.
,
27
(
1
), pp.
40
45
.
3.
Klodd
,
E.
,
Hansen
,
A.
,
Fatone
,
S.
, and
Edwards
,
M.
,
2010
, “
Effects of Prosthetic Foot Forefoot Flexibility on Gait of Unilateral Transtibial Prosthesis Users
,”
J. Rehabil. Res. Develop.
,
47
(
9
), pp.
899
910
.
4.
Klodd
,
E.
,
Hansen
,
A.
,
Fatone
,
S.
, and
Edwards
,
M.
,
2010
, “
Effects of Prosthetic Foot Forefoot Flexibility on Oxygen Cost and Subjective Preference Rankings of Unilateral Transtibial Prosthesis Users
,”
J. Rehabil. Res. Develop.
,
47
(
6
), pp.
543
552
.
5.
Bonnet
,
X.
,
Villa
,
C.
,
Fode
,
P.
,
Lavaste
,
F.
, and
Pillet
,
H.
,
2014
, “
Mechanical Work Performed by Individual Limbs of Transfemoral Amputees During Step-to-Step Transitions: Effect of Walking Velocity
,”
Proc. Inst. Mech. Eng. Part H, J. Eng. Med.
,
228
(
1
), pp.
60
66
.
6.
Adamczyk
,
P. G.
, and
Kuo
,
A. D.
,
2015
, “
Mechanisms of Gait Asymmetry Due to Push-Off Deficiency in Unilateral Amputees
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
5
), pp.
776
785
.
7.
Major
,
M. J.
,
Kenney
,
L. P.
,
Twiste
,
M.
, and
Howard
,
D.
,
2012
, “
Stance Phase Mechanical Characterization of Transtibial Prostheses Distal to the Socket: A Review
,”
J. Rehabil. Res. Develop.
,
49
(
6
), pp.
815
829
.
8.
Zelik
,
K. E.
,
Collins
,
S. H.
,
Adamczyk
,
P. G.
,
Segal
,
A. D.
,
Klute
,
G. K.
,
Morgenroth
,
D. C.
,
Hahn
,
M. E.
,
Orendurff
,
M. S.
,
Czerniecki
,
J. M.
, and
Kuo
,
A. D.
,
2011
, “
Systematic Variation of Prosthetic Foot Spring Affects Center-of-Mass Mechanics and Metabolic Cost During Walking
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
19
(
4
), pp.
411
419
.
9.
Houdijk
,
H.
,
Pollmann
,
E.
,
Groenewold
,
M.
,
Wiggerts
,
H.
, and
Polomski
,
W.
,
2009
, “
The Energy Cost for the Step-to-Step Transition in Amputee Walking
,”
Gait Posture
,
30
(
1
), pp.
35
40
.
10.
Linde
,
V. D.
,
Cheriel
,
J.
, and
Alexander
,
C. H.
,
2004
, “
A Systematic Literature Review of the Effect of Different Prosthetic Components on Human Functioning With a Lower-Limb Prosthesis
,”
J. Rehabil. Res. Develop.
,
41
(
4
), pp.
555
570
.
11.
Hafner
,
B. J.
,
2005
, “
Clinical Prescription and Use of Prosthetic Foot and Ankle Mechanisms: A Review of the Literature
,”
J. Prosthet. Orthotics
,
17
(
4
), pp.
S5
S11
.
12.
Hofstad
,
C.
,
van der Linde
,
H.
,
van Limbeek
,
J.
, and
Postema
,
K.
,
2004
, “
Prescription of Prosthetic Ankle-Foot Mechanisms After Lower Limb Amputation (Review)
,” Cochrane Database Syst. Rev.,
1
, p. CD003978.
13.
Fey
,
N. P.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
,
2011
, “
The Influence of Energy Storage and Return Foot Stiffness on Walking Mechanics and Muscle Activity in below-Knee Amputees
,”
Clin. Biomech.
,
26
(
10
), pp.
1025
1032
.
14.
Hansen
,
A. H.
,
Childress
,
D. S.
, and
Knox
,
E. H.
,
2000
, “
Prosthetic Foot Roll-Over Shapes With Implications for Alignment of Transtibial Prostheses
,”
Prosthet. Orthotics Int.
,
24
(
3
), pp.
205
215
.
15.
Hansen
,
A. H.
, and
Childress
,
D. S.
,
2005
, “
Effects of Adding Weight to the Torso on Roll-Over Characteristics of Walking
,”
J. Rehabil. Res. Develop.
,
42
(
3
), p.
381
.
16.
Hansen
,
A. H.
, and
Childress
,
D. S.
,
2004
, “
Effects of Shoe Heel Height on Biologic Rollover Characteristics During Walking
,”
J. Rehabil. Res. Develop.
,
41
(
4
), pp.
547
554
.
17.
Hansen
,
A. H.
,
Childress
,
D. S.
, and
Knox
,
E. H.
,
2004
, “
Roll-Over Shapes of Human Locomotor Systems: Effects of Walking Speed
,”
Clin. Biomech.
,
19
(
4
), pp.
407
414
.
18.
Olesnavage
,
K. M.
, and
Winter V
,
A. G.
, 2018, ”
A Novel Framework for Quantitatively Connecting the Mechanical Design of Passive Prosthetic Feet to Lower Leg Trajectory
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
, (in press).
19.
Olesnavage
,
K. M.
, and
Winter V
,
A. G.
,
2015
, “
Lower Leg Trajectory Error: A Novel Optimization Parameter for Designing Passive Prosthetic Feet
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Singapore, Aug. 11–14, pp.
271
276
.
20.
Olesnavage
,
K. M.
,
2018
, “
Development and Validation of a Novel Framework for Designing and Optimizing Passive Prosthetic Feet Using Lower Leg Trajectory
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.http://hdl.handle.net/1721.1/115734
21.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
,
Wiley
, Hoboken, NJ.
22.
Olesnavage
,
K. M.
, and
Winter
, V
,
A.
,
G.
,
2016
, “
Design and Preliminary Testing of a Prototype for Evaluating Lower Leg Trajectory Error as an Optimization Metric for Prosthetic Feet
,”
ASME
Paper No. DETC2016-60565
.
23.
Olesnavage
,
K. M.
, and
Winter
, V
,
A.
,
G.
,
2015
, “
Design and Qualitative Testing of a Prosthetic Foot With Rotational Ankle and Metatarsal Joints to Mimic Physiological Roll-Over Shape
,”
ASME
Paper No. DETC2015-46518
.
24.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
, New York.
25.
Lyu
,
N.
, and
Saitou
,
K.
,
2005
, “
Topology Optimization of Multicomponent Beam Structure Via Decomposition-Based Assembly Synthesis
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
170
183
.
26.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
1999
, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
33
42
.
27.
Lu
,
K. J.
, and
Kota
,
S.
,
2006
, “
Topology and Dimensional Synthesis of Compliant Mechanisms Using Discrete Optimization
,”
ASME J. Mech. Des.
,
128
(
5
), pp.
1080
1091
.
28.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
,
2001
, “
Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
26–27
), pp.
3443
3459
.
29.
Santer
,
M.
, and
Pellegrino
,
S.
,
2009
, “
Topological Optimization of Compliant Adaptive Wing Structure
,”
Am. Inst. Aeronaut. Astronaut. J.
,
47
(
3
), pp.
523
534
.
30.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
238
245
.
31.
Cao
,
L.
,
Dolovich
,
A. T.
, and
Zhang
,
W. C.
,
2015
, “
Hybrid Compliant Mechanism Design Using a Mixed Mesh of Flexure Hinge Elements and Beam Elements Through Topology Optimization
,”
ASME J. Mech. Des.
,
137
(
9
), p.
092303
.
32.
Deepak
,
S. R.
,
Dinesh
,
M.
,
Sahu
,
D. K.
, and
Ananthasuresh
,
G.
,
2009
, “
A Comparative Study of the Formulations and Benchmark Problems for the Topology Optimization of Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011003
.
33.
Xu
,
D.
, and
Ananthasuresh
,
G. K.
,
2003
, “
Freeform Skeletal Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
253
261
.
34.
Lan
,
C. C.
, and
Cheng
,
Y. J.
,
2008
, “
Distributed Shape Optimization of Compliant Mechanisms Using Intrinsic Functions
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072304
.
35.
Hetrick
,
J. A.
, and
Kota
,
S.
,
1999
, “
An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
121
(
2
), pp.
229
234
.
36.
Zhou
,
H.
, and
Ting
,
K.-L.
,
2006
, “
Shape and Size Synthesis of Compliant Mechanisms Using Wide Curve Theory
,”
ASME J. Mech. Des.
,
128
(
3
), pp.
551
558
.
You do not currently have access to this content.