We present a system for 3D printing large-scale objects using natural biocomposite materials, which comprises a precision extruder mounted on an industrial six-axis robot. This paper highlights work on controlling process settings to print filaments of desired dimensions while constraining the operating point to a region of maximum tensile strength and minimum shrinkage. Response surface models relating the process settings to the geometric and physical properties of extruded filaments are obtained through face-centered central composite designed experiments. Unlike traditional applications of this technique that identify a fixed operating point, the models are used to uncover dimensions of filaments obtainable within the operating boundaries of our system. Process-setting predictions are then made through multi-objective optimization of the models. An interesting outcome of this study is the ability to produce filaments of different shrinkage and tensile strength properties by solely changing process settings. As a follow-up, we identify optimal lateral overlap and interlayer spacing parameters to define toolpaths to print structures. If unoptimized, the material’s anisotropic shrinkage and nonlinear compression characteristics cause severe delamination, cross-sectional tapering, and warpage. Finally, we show the linear scalability of the shrinkage model in 3D space, which allows for suitable toolpath compensation to improve the dimensional accuracy of printed artifacts. We believe this first-ever study on the parametrization of the large-scale additive manufacture technique with biocomposites will serve as reference for future sustainable developments in manufacturing.

References

1.
Duty
,
C. E.
,
Kunc
,
V.
,
Compton
,
B.
,
Post
,
B.
,
Erdman
,
D.
,
Smith
,
R.
,
Lind
,
R.
,
Lloyd
,
P.
, and
Love
,
L.
,
2017
, “
Structure and Mechanical Behavior of Big Area Additive Manufacturing (BAAM) Materials
,”
Rapid Prototyp. J.
,
23
(
1
), pp.
181
189
.
2.
Wang
,
Z. Y.
,
Liu
,
R. W.
,
Sparks
,
T.
, and
Liou
,
F.
,
2016
, “
Large-Scale Deposition System by an Industrial Robot (I): Design of Fused Pellet Modeling System and Extrusion Process Analysis
,”
3D Print Addit. Manuf.
,
3
(
1
), pp.
39
47
.
3.
Barnett
,
E.
, and
Gosselin
,
C.
,
2015
, “
Large-Scale 3D Printing With a Cable-Suspended Robot
,”
Addi. Manufact.
,
7
, pp.
27
44
.
4.
Lee
,
J. C.
,
Moon
,
J. H.
,
Jeong
,
J.-H.
,
Kim
,
M. Y.
,
Kim
,
B. M.
,
Choi
,
M.-C.
,
Kim
,
J. R.
, and
Ha
,
C.-S.
,
2016
, “
Biodegradability of Poly(Lactic Acid) (PLA)/Lactic Acid (LA) Blends Using Anaerobic Digester Sludge
,”
Macromol. Res.
,
24
(
8
), pp.
741
747
.
5.
Zia
,
K. M.
,
Bhatti
,
H. N.
, and
Ahmad Bhatti
,
I.
,
2007
, “
Methods for Polyurethane and Polyurethane Composites, Recycling and Recovery: A Review
,”
React. Funct. Poly.
,
67
(
8
), pp.
675
692
.
6.
Lim
,
S.
,
Buswell
,
R. A.
,
Le
,
T. T.
,
Austin
,
S. A.
,
Gibb
,
A. G. F.
, and
Thorpe
,
T.
,
2012
, “
Developments in Construction-Scale Additive Manufacturing Processes
,”
Autom. Constr.
,
21
, pp.
262
268
.
7.
Perrot
,
A.
,
Rangeard
,
D.
, and
Courteille
,
E.
,
2018
, “
3D Printing of Earth-Based Materials: Processing Aspects
,”
Constr. Build. Mater.
,
172
, pp.
670
676
.
8.
Brown
,
M. T.
, and
Buranakarn
,
V.
,
2003
, “
Emergy Indices and Ratios for Sustainable Material Cycles and Recycle Options
,”
Resour., Conserv. Recycl.
,
38
(
1
), pp.
1
22
.
9.
Hajash
,
K.
,
Sparrman
,
B.
,
Guberan
,
C.
,
Laucks
,
J.
, and
Tibbits
,
S.
,
2017
, “
Large-Scale Rapid Liquid Printing
,”
3D Print Addit. Manuf.
,
4
(
3
), pp.
123
131
.
10.
Siqueira
,
G.
,
Kokkinis
,
D.
,
Libanori
,
R.
,
Hausmann
,
M. K.
,
Gladman
,
A. S.
,
Neels
,
A.
,
Tingaut
,
P.
,
Zimmermann
,
T.
,
Lewis
,
J. A.
, and
Studart
,
A. R.
,
2017
, “
Cellulose Nanocrystal Inks for 3D Printing of Textured Cellular Architectures
,”
Adv. Funct. Mater.
,
27
(
12
),
1604619
.
11.
Lam
,
C. X. F.
,
Mo
,
X. M.
,
Teoh
,
S. H.
, and
Hutmacher
,
D. W.
,
2002
, “
Scaffold Development Using 3D Printing With a Starch-Based Polymer
,”
Mater. Sci. Eng. C
,
20
(
1
), pp.
49
56
.
12.
Le Duigou
,
A.
,
Castro
,
M.
,
Bevan
,
R.
, and
Martin
,
N.
,
2016
, “
3D Printing of Wood Fibre Biocomposites: From Mechanical to Actuation Functionality
,”
Mater. Des.
,
96
, pp.
106
114
.
13.
Li
,
V. C.-F.
,
Dunn
,
C. K.
,
Zhang
,
Z.
,
Deng
,
Y.
, and
Qi
,
H. J.
,
2017
, “
Direct Ink Write (DIW) 3D Printed Cellulose Nanocrystal Aerogel Structures
,”
Sci. Rep.
,
7
(
1
),
8018
.
14.
Sanandiya
,
N. D.
,
Vijay
,
Y.
,
Dimopoulou
,
M.
,
Dritsas
,
S.
, and
Fernandez
,
J. G.
,
2018
, “
Large-Scale Additive Manufacturing With Bioinspired Cellulosic Materials
,”
Sci. Rep.
,
8
(
1
),
8642
.
15.
ISO/ASTM52900-15, 2015
, “
Standard Terminology for Additive Manufacturing—General Principles—Terminology
,”
ASTM International
,
West Conshohocken, PA
.
16.
Lewis
,
J. A.
,
2006
, “
Direct Ink Writing of 3D Functional Materials
,”
Adv. Funct. Mater.
,
16
(
17
), pp.
2193
2204
.
17.
Mogas-Soldevila
,
L.
,
Duro-Royo
,
J.
, and
Oxman
,
N.
,
2014
, “
Water-Based Robotic Fabrication: Large-Scale Additive Manufacturing of Functionally Graded Hydrogel Composites via Multichamber Extrusion
,”
3D Print Addit. Manuf.
,
1
(
3
), pp.
141
151
.
18.
Fernandez
,
J. G.
, and
Ingber
,
D. E.
,
2014
, “
Manufacturing of Large-Scale Functional Objects Using Biodegradable Chitosan Bioplastic
,”
Macromol. Mater. Eng.
,
299
(
8
), pp.
932
938
.
19.
Suryakumar
,
S.
,
Karunakaran
,
K. P.
,
Bernard
,
A.
,
Chandrasekhar
,
U.
,
Raghavender
,
N.
, and
Sharma
,
D.
,
2011
, “
Weld Bead Modeling and Process Optimization in Hybrid Layered Manufacturing
,”
Comput. Aided Des.
,
43
(
4
), pp.
331
344
.
20.
Ding
,
D. H.
,
Pan
,
Z. X.
,
Cuiuri
,
D.
,
Li
,
H. J.
,
van Duin
,
S.
, and
Larkin
,
N.
,
2016
, “
Bead Modelling and Implementation of Adaptive MAT Path in Wire and Arc Additive Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
39
, pp.
32
42
.
21.
Rayegani
,
F.
, and
Onwubolu
,
G. C.
,
2014
, “
Fused Deposition Modelling (FDM) Process Parameter Prediction and Optimization Using Group Method for Data Handling (GMDH) and Differential Evolution (DE)
,”
Int. J. Adv. Manuf. Tech.
,
73
(
1–4
), pp.
509
519
.
22.
Simunovic
,
S.
,
Nycz
,
A.
,
Noakes
,
M.
,
Chin
,
C.
, and
Oancea
,
V.
,
2017
, “
Metal Big Area Additive Manufacturing: Process Modeling and Validation
,”
NAFEMS World Congress 2017
,
Stockholm, Sweden
.
23.
Dritsas
,
S.
,
2015
, “
A Digital Design and Fabrication Library
,”
SimAUD '15 Proceedings of the Symposium on Simulation for Architecture & Urban Design
,
Alexandria, VA,
Apr. 12–15
.
24.
Kalpakjian
,
S.
,
2010
,
Manufacturing Engineering and Technology
,
Prentice Hall
,
New York
.
25.
Montgomery
,
D. C.
,
2012
,
Statistical Quality Control
, 7th ed.,
John Wiley & Sons
,
New York
.
26.
Kirk
,
Roger
, E
,
2015
, “
Experimental Design
,”
The Blackwell Encyclopedia of Sociology
,
George
Ritzer
, ed.,
John Wiley & Sons
,
New York
.
27.
Seyed Shahabadi
,
S. M.
, and
Reyhani
,
A.
,
2014
, “
Optimization of Operating Conditions in Ultrafiltration Process for Produced Water Treatment via the Full Factorial Design Methodology
,”
Sep. Purif. Technol.
,
132
, pp.
50
61
.
28.
Trachtenberg
,
J. E.
,
Placone
,
J. K.
,
Smith
,
B. T.
,
Piard
,
C. M.
,
Santoro
,
M.
,
Scott
,
D. W.
,
Fisher
,
J. P.
, and
Mikos
,
A. G.
,
2016
, “
Extrusion-Based 3D Printing of Poly(propylene fumarate) in a Full-Factorial Design
,”
ACS Biomater. Sci. Eng.
,
2
(
10
), pp.
1771
1780
.
29.
Morris
,
M. D.
,
1991
, “
Factorial Sampling Plans for Preliminary Computational Experiments
,”
Technometrics
,
33
(
2
), pp.
161
174
.
30.
Gunst
,
R. F.
,
1996
, “
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,”
Technometrics
,
38
(
3
), pp.
284
286
.
31.
Singh
,
S.
,
Sharma
,
V. S.
, and
Sachdeva
,
A.
,
2012
, “
Optimization and Analysis of Shrinkage in Selective Laser Sintered Polyamide Parts
,”
Mater. Manuf. Proc.
,
27
(
6
), pp.
707
714
.
32.
Vicente
,
G.
,
Coteron
,
A.
,
Martinez
,
M.
, and
Aracil
,
J.
,
1998
, “
Application of the Factorial Design of Experiments and Response Surface Methodology to Optimize Biodiesel Production
,”
Ind. Crops Prod.
,
8
(
1
), pp.
29
35
.
33.
Dong
,
G.
,
Wijaya
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2018
, “
Optimizing Process Parameters of Fused Deposition Modeling by Taguchi Method for the Fabrication of Lattice Structures
,”
Addit. Manuf.
,
19
, pp.
62
72
.
34.
Derringer
,
G.
, and
Suich
,
R.
,
1980
, “
Simultaneous Optimization of Several Response Variables
,”
J. Qual. Technol.
,
12
(
4
), pp.
214
219
.
35.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T. Q.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Comp. Part B Eng.
,
143
, pp.
172
196
.
You do not currently have access to this content.