Abstract

Compared to manual therapy, robot therapy can provide more intensive and accurate rehabilitation training. However, most current devices are built on bulky and complex multi-degree-of-freedom (multi-DOF) mechanisms. Recently, 1-DOF mechanisms have gained popularity due to their portability and simplicity. Existing synthesis methods for 1-DOF mechanisms focus primarily on computing the optimal mechanism dimensions such that kinematic error between the task and the mechanism output is minimized. In cases where the kinematically feasible solutions become impractical under engineering circumstances, designers may need a handle to intervene in the synthesis process; moreover, the force interactions between the mechanism and users should also be considered to encourage the active participation of users for effective physical recovery. In this paper, we combine kinematic and kinetostatic synthesis to develop an interactive rehabilitation mechanism design system, taking into account task specifications on rehabilitation motion and gravity balancing. To enable interactive design, users are invited to manage the task movement via kinematic tolerance-oriented variation, thus providing the flexibility to address practical constraints. To compensate the gravity, torsional springs are attached to the actuated joints of the mechanism and human limb, and designed based on the principle of static balancing. For presenting a systematic, general, and defect-free design methodology for 1-DOF rehabilitation mechanisms, the synthesis model is formulated in a Fourier way to better accommodate different mechanism types and continuous limb motion. Examples of the upper- and lower-limb rehabilitation mechanism design are given in the end to demonstrate the validity of the proposed method.

References

1.
Langhorne
,
P.
,
Bernhardt
,
J.
, and
Kwakkel
,
G.
,
2011
, “
Stroke Rehabilitation
,”
The Lancet
,
377
, pp.
1693
1702
.
2.
Metzger
,
J. C.
,
Lambercy
,
O.
, and
Gassert
,
R.
,
2015
, “
Performance Comparison of Interaction Control Strategies on a Hand Rehabilitation Robot
,”
IEEE International Conference on Rehabilitation Robotics
,
Singapore
,
Aug. 11–14
, pp.
846
851
.
3.
Tan
,
G. R.
,
Robson
,
N. P.
, and
Soh
,
G. S.
,
2017
, “
Motion Generation of Passive Slider Multiloop Wearable Hand Devices
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041011
.
4.
Shen
,
Z.
,
Allison
,
G.
, and
Cui
,
L.
,
2018
, “
An Integrated Type and Dimensional Synthesis Method to Design One Degree-of-Freedom Planar Linkages With Only Revolute Joints for Exoskeletons
,”
ASME J. Mech. Des.
,
140
(
9
), p.
092302
.
5.
Zhao
,
X.
,
Yu
,
C.
,
Chen
,
J.
,
Sun
,
X.
,
Ye
,
J.
,
Chen
,
Z.
, and
Zhou
,
Q.
,
2021
, “
Synthesis and Application of a Single Degree-of-Freedom Six-Bar Linkage With Mixed Exact and Approximate Pose Constraints
,”
ASME J. Mech. Des.
,
143
(
4
), p.
043301
.
6.
Zhao
,
P.
,
Zhu
,
L.
,
Li
,
X.
, and
Zi
,
B.
,
2019
, “
Design of Planar 1-DoF Cam-Linkage for Lower-Limb Rehabilitation Via Kinematic-Mapping Motion Synthesis Framework
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041006
.
7.
Sandor
,
G. N.
, and
Erdman
,
A. G.
,
2009
,
Advanced Mechanism Design: Analysis and Synthesis
,
Prentice Hall
,
Englewood Cliffs, NJ
.
8.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
,
Springer
,
New York
.
9.
Freudenstein
,
F.
,
2010
, “
Approximate Synthesis of Four-Bar Linkages
,”
Resonance
,
15
(
8
), pp.
740
767
.
10.
Ge
,
Q. J.
,
Purwar
,
A.
,
Zhao
,
P.
, and
Deshpande
,
S.
,
2017
, “
A Task Driven Approach to Unified Synthesis of Planar Four-Bar Linkages Using Algebraic Fitting of a Pencil of G-Manifolds
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031011
.
11.
Sancibrian
,
R.
,
Viadero
,
F.
,
Garcia
,
P.
, and
Fernandez
,
A.
,
2004
, “
Gradient-Based Optimization of Path Synthesis Problems in Planar Mechanisms
,”
Mech. Mach. Theory
,
39
(
8
), pp.
839
856
.
12.
Gogate
,
G. R.
, and
Matekar
,
S. B.
,
2012
, “
Optimum Synthesis of Motion Generating Four-Bar Mechanisms Using Alternate Error Functions
,”
Mech. Mach. Theory
,
54
, pp.
41
61
.
13.
Acharyya
,
S.
, and
Mandal
,
M.
,
2009
, “
Performance of EAs for Four-Bar Linkage Synthesis
,”
Mech. Mach. Theory
,
44
(
9
), pp.
1784
1794
.
14.
Bataller
,
A.
,
Cabrera
,
J. A.
,
Clavijo
,
M.
, and
Castillo
,
J. J.
,
2016
, “
Evolutionary Synthesis of Mechanisms Applied to the Design of an Exoskeleton for Finger Rehabilitation
,”
Mech. Mach. Theory
,
105
, pp.
31
43
.
15.
Mcgarva
,
J. R.
,
1994
, “
Rapid Search and Selection of Path Generating Mechanisms From a Library
,”
Mech. Mach. Theory
,
29
(
2
), pp.
223
235
.
16.
Chu
,
J. K.
, and
Sun
,
J. W.
,
2010
, “
A New Approach to Dimension Synthesis of Spatial Four-Bar Linkage Through Numerical Atlas Method
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041004
.
17.
Sun
,
J.
,
Chen
,
L.
, and
Chu
,
J.
,
2016
, “
Motion Generation of Spherical Four-Bar Mechanism Using Harmonic Characteristic Parameters
,”
Mech. Mach. Theory
,
95
, pp.
76
92
.
18.
Sun
,
J.
,
Wang
,
P.
,
Liu
,
W.
, and
Chu
,
J.
,
2018
, “
Non-integer-period Motion Generation of a Planar Four-Bar Mechanism Using Wavelet Series
,”
Mech. Mach. Theory
,
121
, pp.
28
41
.
19.
Deshpande
,
S.
, and
Purwar
,
A.
,
2019
, “
A Machine Learning Approach to Kinematic Synthesis of Defect-Free Planar Four-Bar Linkages
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021004
.
20.
Vasiliu
,
A.
, and
Yannou
,
B.
,
2001
, “
Dimensional Synthesis of Planar Mechanisms Using Neural Networks: Application to Path Generator Linkages
,”
Mech. Mach. Theory
,
36
(
2
), pp.
299
310
.
21.
Galán-Marín
,
G.
,
Alonso
,
F. J.
, and
Del Castillo
,
J. M.
,
2009
, “
Shape Optimization for Path Synthesis of Crank-Rocker Mechanisms Using a Wavelet-Based Neural Network
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1132
1143
.
22.
Khan
,
N.
,
Ullah
,
I.
, and
Al-Grafi
,
M.
,
2015
, “
Dimensional Synthesis of Mechanical Linkages Using Artificial Neural Networks and Fourier Descriptors
,”
Mech. Sci.
,
6
(
1
), pp.
29
34
.
23.
Wu
,
J.
,
Ge
,
Q. J.
,
Gao
,
F.
, and
Guo
,
W. Z.
,
2011
, “
On the Extension of a FD Based Method for Planar Four-Bar Linkage Synthesis for Generation of Open and Closed Paths
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031002
.
24.
Li
,
X.
,
Wu
,
J.
, and
Ge
,
Q. J.
,
2016
, “
A Fourier Descriptor-Based Approach to Design Space Decomposition for Planar Motion Approximation
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
064501
.
25.
Han
,
J.
, and
Qian
,
W.
,
2009
, “
On the Solution of Region-Based Planar Four-Bar Motion Generation
,”
Mech. Mach. Theory
,
44
(
2
), pp.
457
465
.
26.
Yang
,
T.
,
Han
,
J.
, and
Yin
,
L.
,
2011
, “
A Unified Synthesis Method Based on Solution Regions for Four Finitely Separated and Mixed Point-Order Positions
,”
Mech. Mach. Theory
,
46
(
11
), pp.
1719
1731
.
27.
Zhao
,
P.
,
Li
,
X.
,
Zhu
,
L.
,
Zi
,
B.
, and
Ge
,
Q. J.
,
2016
, “
A Novel Motion Synthesis Approach With Expandable Solution Space for Planar Linkages Based on Kinematic-Mapping
,”
Mech. Mach. Theory
,
105
, pp.
164
175
.
28.
Deshpande
,
S.
, and
Purwar
,
A.
,
2019
, “
Computational Creativity Via Assisted Variational Synthesis of Mechanisms Using Deep Generative Models
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121402
.
29.
Deshpande
,
S.
, and
Purwar
,
A.
,
2021
, “
An Image-Based Approach to Variational Path Synthesis of Linkages
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
2
), p.
021005
.
30.
Harris
,
C.
, and
Wolpert
,
D.
,
1998
, “
Signal-Dependent Noise Determines Motor Planning
,”
Nature
,
394
(
6695
), pp.
780
784
.
31.
Faisal
,
A. A.
,
Selen
,
L. P.
, and
Wolpert
,
D.
,
2008
, “
Noise in the Nervous System
,”
Nat. Rev. Neurosci.
,
9
(
4
), pp.
292
303
.
32.
Sutter
,
K.
,
Oostwoud Wijdenes
,
L.
,
van Beers
,
R. J.
, and
Medendorp
,
W.
,
2021
, “
Movement Preparation Time Determines Movement Variability
,”
J. Neurophysiol.
,
125
(
6
), pp.
2375
2383
.
33.
Gassert
,
R.
, and
Dietz
,
V.
,
2018
, “
Rehabilitation Robots for the Treatment of Sensorimotor Deficits: A Neurophysiological Perspective
,”
J. Neuroeng. Rehabil.
,
15
(
46
), pp.
1
15
.
34.
Helen
,
J. H.
,
2014
,
Daniels and Worthingham’s Muscle Testing: Techniques of Manual Examination and Performance Testing
,
Saunders/Elsevier
,
St. Louis, MO
.
35.
Lin
,
P.-Y.
,
Shieh
,
W.-B.
, and
Chen
,
D.-Z.
,
2013
, “
A Theoretical Study of Weight-Balanced Mechanisms for Design of Spring Assistive Mobile Arm Support (MAS)
,”
Mech. Mach. Theory
,
61
, pp.
156
167
.
36.
Tseng
,
T.-Y.
,
Lin
,
Y.-J.
,
Hsu
,
W.-C.
,
Lin
,
L.-F.
, and
Kuo
,
C.-H.
,
2017
, “
A Novel Reconfigurable Gravity Balancer for Lower-Limb Rehabilitation With Switchable Hip/Knee-Only Exercise
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041002
.
37.
Alamdari
,
A.
,
Haghighi
,
R.
, and
Krovi
,
V.
,
2019
, “
Gravity-Balancing of Elastic Articulated-Cable Leg-Orthosis Emulator
,”
Mech. Mach. Theory
,
131
, pp.
351
370
.
38.
Wu
,
J.
,
Ge
,
Q. J.
,
Su
,
H. J.
, and
Gao
,
F.
,
2013
, “
Kinematic Acquisition of Geometric Constraints for Task-Oriented Design of Planar Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
011003
.
39.
Nie
,
X.
, and
Krovi
,
V.
,
2005
, “
Fourier Methods for Kinematic Synthesis of Coupled Serial Chain Mechanisms
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
232
241
.
40.
Krovi
,
V.
, and
Nie
,
X.
,
2008
, “
Design of Reconfigurable Coupled-Serial-Chain-Based Manipulation Assistive Aids
,”
Rob. Computer-Integr. Manuf.
,
24
(
3
), pp.
345
358
.
41.
Li
,
X.
,
Wei
,
S.
,
Liao
,
Q.
, and
Zhang
,
Y.
,
2020
, “
A Novel Analytical Method for Four-Bar Path Generation Synthesis Based on Fourier Series
,”
Mech. Mach. Theory
,
144
, p.
103671
.
42.
Boggess
,
A.
, and
Narcowich
,
F. J.
,
2001
,
A First Course in Wavelets With Fourier Analysis
,
Prentical Hall
,
Upper Saddle River, NJ
.
43.
Li
,
X.
, and
Chen
,
P.
,
2017
, “
A Parametrization-Invariant Fourier Approach to Planar Linkage Synthesis for Path Generation
,”
Math. Probl. Eng.
,
2017
, p.
8458149
.
44.
McGarva
,
J.
, and
Mullineux
,
G.
,
1993
, “
Harmonic Representation of Closed Curves
,”
Appl. Math. Model.
,
17
(
4
), pp.
213
218
.
45.
Chen
,
P.
,
Dong
,
D.
,
Lv
,
H.
, and
Zhu
,
L.
,
2020
, “
A User Motion Data Acquisition and Processing Method for the Design of Rehabilitation Robot With Few Degrees-of-Freedom
,”
ASME J. Eng. Sci. Med. Diagnostics Therapy
,
3
(
2
), p.
021104
.
46.
Maciejasz
,
P.
,
Eschweiler
,
J.
,
Gerlach-Hahn
,
K.
,
Jansen-Troy
,
A.
, and
Leonhardt
,
S.
,
2014
, “
A Survey on Robotic Devices for Upper Limb Rehabilitation
,”
J. Neuroeng. Rehabil.
,
11
(
1
), pp.
1
29
.
You do not currently have access to this content.