Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Decoupled compliant parallel mechanisms with isotropic legs possess many excellent performances, including ease of actuation, control, manufacture and mathematical analysis, as well as effective error compensation. Despite the advent of numerous isotropic compliant parallel mechanisms, their synthesis process predominantly relies on the empirical knowledge of engineers, with an absence of dedicated synthesis methodologies. This paper proposes the constraint algebra method, a novel synthesis method capable of autonomously exploring feasible constraint space for the synthesis. This method involves algebraic formulation of the constraints for the compliant modules, followed by solving constraint equations to find the feasible constraints and orientations, thereby facilitating the synthesis with intended performance characteristics. The multiplicity of solutions to the constraint equations enables the generation of diverse designs, including innovative configurations that are challenging to obtain via other methods and experience. Furthermore, by the consideration of machinability in several steps of synthesis, the optimal configuration can be selected for simplified manufacture. A design case has been monolithically prototyped and experimentally tested. The proposed methodology holds promise for potential extension to the synthesis of other types of compliant mechanisms.

References

1.
Tang
,
H.
,
Gao
,
J.
,
Chen
,
X.
,
Zhang
,
L. Y.
, and
Zeng
,
Z. H.
,
2016
, “
Design and Analysis of a Planar Piezo-Actuated Nanopositioner With Millimeter Scale Stroke
,”
Key Eng. Mater.
,
679
, pp.
143
148
.
2.
Seol
,
D.
,
Kim
,
B.
, and
Kim
,
Y.
,
2017
, “
Non-piezoelectric Effects in Piezoresponse Force Microscopy
,”
Curr. Appl. Phys.
,
17
(
5
), pp.
661
674
.
3.
Rangelow
,
I. W.
,
Ivanov
,
T.
,
Ahmad
,
A.
,
Kaestner
,
M.
,
Lenk
,
C.
,
Bozchalooi
,
I. S.
,
Xia
,
F.
,
Youcef-Toumi
,
K.
,
Holz
,
M.
, and
Reum
,
A.
,
2017
, “
Review Article: Active Scanning Probes: A Versatile Toolkit for Fast Imaging and Emerging Nanofabrication
,”
J. Vac. Sci. Technol. B
,
35
(
6
), p.
06G101
.
4.
Li
,
J.
,
Huang
,
H.
, and
Morita
,
T.
,
2019
, “
Stepping Piezoelectric Actuators With Large Working Stroke for Nano-Positioning Systems: A Review
,”
Sens. Actuators A
,
292
, pp.
39
51
.
5.
Lin
,
S.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2019
, “
Design, Modeling and Analysis of a XY Nanopositioning Stage for High Speed Scanning
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
538
(
1
), p.
012043
.
6.
Hyo-Young
,
K.
,
Da-Hoon
,
A.
, and
Dae-Gab
,
G.
,
2012
, “
Development of a Novel 3-Degrees of Freedom Flexure Based Positioning System
,”
Rev. Sci. Instrum.
,
83
(
5
), pp.
400
410
.
7.
Omidbeike
,
M.
,
Moore
,
S. I.
,
Yong
,
Y. K.
, and
Fleming
,
A. J.
,
2021
, “
Five-Axis Bimorph Monolithic Nanopositioning Stage: Design, Modeling, and Characterization
,”
Sens. Actuators A
,
332
(
1
), p.
113125
.
8.
Zhang
,
Z.
, and
Yan
,
P.
,
2021
, “
Enhanced Robust Nanopositioning Control for an X–Y Piezoelectric Stage With Sensor Delays: An Infinite Dimensional H∞ Optimization Approach
,”
Mechatronics
,
75
, p.
102511
.
9.
Barrientos-Diez
,
J.
,
Russo
,
M.
,
Dong
,
X.
,
Axinte
,
D.
, and
Kell
,
J.
,
2023
, “
Asymmetric Continuum Robots
,”
IEEE Robot. Autom. Lett.
,
8
(
3
), pp.
1279
1286
.
10.
Sun
,
C.
,
Kang
,
R.
,
Yuan
,
P.
,
Chang
,
L.
,
Dong
,
X.
,
Wan
,
S.
,
Song
,
Z.
, and
Dai
,
J.
,
2023
, “
Design and Modeling of a Cable-Driven Hollow Continuum Manipulator
,”
2023 International Conference on Advanced Robotics and Mechatronics (ICARM)
,
Sanya, China
,
July 8–10
, pp.
55
60
.
11.
Verotti
,
M.
,
Berselli
,
G.
,
Bruzzone
,
L.
,
Baggetta
,
M.
, and
Fanghella
,
P.
,
2021
, “
Design, Simulation and Testing of an Isotropic Compliant Mechanism
,”
Precis. Eng.
,
72
, pp.
730
737
.
12.
Chen
,
G.
,
Gou
,
Y.
, and
Zhang
,
A.
,
2011
, “
Synthesis of Compliant Multistable Mechanisms Through Use of a Single Bistable Mechanism
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081007
.
13.
Zhu
,
B.
,
Chen
,
Q.
,
Li
,
H.
,
Zhang
,
H.
, and
Zhang
,
X.
,
2019
, “
Design of Planar Large-Deflection Compliant Mechanisms With Decoupled Multi-input–output Using Topology Optimization
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031015
.
14.
Zhang
,
Z.
,
Yang
,
X.
, and
Yan
,
P.
,
2019
, “
Large Dynamic Range Tracking of an xy Compliant Nanomanipulator With Cross-Axis Coupling Reduction
,”
Mech. Syst. Signal Process.
,
117
, pp.
757
770
.
15.
Li
,
H.
,
Hao
,
G.
, and
Kavanagh
,
R. C.
,
2016
, “
Position-Space-Based Compliant Mechanism Reconfiguration Approach and Its Application in the Reduction of Parasitic Motion
,”
ASME J. Mech. Des.
,
138
(
9
), p.
092301
.
16.
Archer
,
N. C.
, and
Hopkins
,
J. B.
,
2023
, “
Large-Range Rotation-to-Translation Compliant Transmission Mechanism
,”
ASME J. Mech. Des.
,
145
(
12
), p.
125001
.
17.
Derderian
,
J. M.
,
Howell
,
L. L.
,
Murphy
,
M. D.
,
Lyon
,
S. M.
, and
Pack
,
S. D.
,
1996
, “
Compliant Parallel-Guiding Mechanisms
,”
Proceedings of the ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. Volume 2A: 24th Biennial Mechanisms Conference
,
Irvine, CA
,
Aug. 18–22
.
18.
Mattson
,
C. A.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2004
, “
Development of Commercially Viable Compliant Mechanisms Using the Pseudo-Rigid-Body Model: Case Studies of Parallel Mechanisms
,”
J. Intell. Mater. Syst. Struct.
,
15
(
3
), pp.
195
202
.
19.
Hopkins
,
J. B.
,
Lange
,
K. J.
, and
Spadaccini
,
C. M.
,
2013
, “
Synthesizing the Compliant Microstructure of Thermally Actuated Materials Using Freedom, Actuation, and Constraint Topologies
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15, 2012
, pp.
249
258
, Paper No: DETC2012-70479.
20.
DiBiasio
,
C. M.
, and
Hopkins
,
J. B.
,
2012
, “
Sensitivity of Freedom Spaces During Flexure Stage Design Via Fact
,”
Precis. Eng.
,
36
(
3
), pp.
494
499
.
21.
Su
,
H.
,
Dorozhkin
,
D. V.
, and
Vance
,
J. M.
,
2009
, “
A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041009
.
22.
Hopkins
,
J. B.
, and
Panas
,
R. M.
,
2013
, “
Design of Flexure-Based Precision Transmission Mechanisms Using Screw Theory
,”
Precis. Eng.
,
37
(
2
), pp.
299
307
.
23.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
A Screw Theory Basis for Quantitative and Graphical Design Tools That Define Layout of Actuators to Minimize Parasitic Errors in Parallel Flexure Systems
,”
Precis. Eng.
,
34
(
4
), pp.
767
776
.
24.
Yue
,
C.
,
Zhang
,
Y.
,
Su
,
H. J.
, and
Kong
,
X.
,
2015
, “
Type Synthesis of Three-Degree-of-Freedom Translational Compliant Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031012
.
25.
Qiu
,
C.
, and
Dai
,
J. S.
,
2020
,
Analysis and Synthesis of Compliant Parallel Mechanisms—Screw Theory Approach
,
Springer
,
New York
.
26.
Yu
,
J.
,
Li
,
S.
,
Su
,
H.
, and
Culpepper
,
M. L.
,
2011
, “
Screw Theory Based Methodology for the Deterministic Type Synthesis of Flexure Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031008
.
27.
Deepak
,
S. R.
,
Dinesh
,
M.
,
Sahu
,
D. K.
, and
Ananthasuresh
,
G. K.
,
2008
, “
A Comparative Study of the Formulations and Benchmark Problems for the Topology Optimization of Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011003
.
28.
Dirksen
,
F.
,
Berg
,
T.
,
Lammering
,
R.
, and
Zohdi
,
T. I.
,
2012
, “
Topology Synthesis of Large-Displacement Compliant Mechanisms With Specific Output Motion Paths
,”
PAMM
,
12
(
1
), pp.
801
804
.
29.
Pedersen
,
C. B.
,
Buhl
,
T.
, and
Sigmund
,
O.
,
2001
, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
50
(
12
), pp.
2683
2705
.
30.
Liang
,
K.
,
Zhu
,
D.
, and
Liu
,
J.
,
2023
, “
Topology Optimization of a Spatial Compliant Parallel Mechanism Based on Constant Motion Transmission Characteristic Matrix
,”
Mech. Mach. Theory
,
180
, p.
105125
.
31.
Seltmann
,
S.
,
Campanile
,
L. F.
, and
Hasse
,
A.
,
2022
, “
Topology-Optimization Based Design of Multi-degree-of-freedom Compliant Mechanisms (Mechanisms With Multiple Pseudo-mobility)
,”
J. Intell. Mater. Syst. Struct.
,
34
(
5
), pp.
609
628
.
32.
Sun
,
Y.
,
Liu
,
Y.
,
Xu
,
L.
, and
Lueth
,
T. C.
,
2019
, “
Design of a Disposable Compliant Medical Forceps Using Topology Optimization Techniques
,”
2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Dali, China
,
Dec. 6–8
, pp.
924
929
, INSPEC Accession Number: 19283848.
33.
Li
,
H.
, and
Hao
,
G.
,
2015
, “
A Constraint and Position Identification (CPI) Approach for the Synthesis of Decoupled Spatial Translational Compliant Parallel Manipulators
,”
Mech. Mach. Theory
,
90
, pp.
59
83
.
34.
Li
,
H.
,
Liu
,
Y.
,
Wang
,
Z.
,
Leng
,
C.
,
Zhang
,
Z.
, and
Hao
,
G.
,
2022
, “
A Constraint-Flow Based Method of Synthesizing xyθ Compliant Parallel Mechanisms With Decoupled Motion and Actuation Characteristics
,”
Mech. Mach. Theory
,
178
, p.
105085
.
35.
Howell
,
L. L.
,
2013
, “Compliant Mechanisms,”
21st Century Kinematics
,
J.
McCarthy
, ed.,
Springer
,
London
, pp.
189
216
.
36.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (Fact)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.
37.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2011
, “
Synthesis of Precision Serial Flexure Systems Using Freedom and Constraint Topologies (Fact)
,”
Precis. Eng.
,
35
(
4
), pp.
638
649
.
38.
Xie
,
Y.
,
Li
,
Y.
,
Cheung
,
C. F.
,
Zhu
,
Z.
, and
Chen
,
X.
,
2021
, “
Design and Analysis of a Novel Compact xyz Parallel Precision Positioning Stage
,”
Microsyst. Technol.
,
27
(
5
), pp.
1925
1932
.
39.
Wan
,
L.
,
Long
,
J.
,
Zhang
,
J.
, and
Gan
,
J.
,
2023
, “
Design of a 3dof xyz Precision Positioning Platform Using Novel z-Shaped Flexure Hinges
,”
Advances in Mechanism, Machine Science and Engineering in China. CCMMS 2022.
,
Singapore
,
July 30
, pp.
569
592
.
40.
Ferrara-Bello
,
A.
,
Vargas-Chable
,
P.
,
Vera-Dimas
,
G.
,
Vargas-Bernal
,
R.
, and
Tecpoyotl-Torres
,
M.
,
2021
, “
Xyz Micropositioning System Based on Compliance Mechanisms Fabricated by Additive Manufacturing
,”
Actuators
,
10
(
4
), p.
68
.
41.
Zhu
,
Z.
,
To
,
S.
,
Zhu
,
W.-L.
,
Li
,
Y.
, and
Huang
,
P.
,
2018
, “
Optimum Design of a Piezo-actuated Triaxial Compliant Mechanism for Nanocutting
,”
IEEE Trans. Ind. Electron.
,
65
(
8
), pp.
6362
6371
.
42.
Hao
,
G.
,
2013
, “
Towards the Design of Monolithic Decoupled xyz Compliant Parallel Mechanisms for Multi-function Applications
,”
Mech. Sci.
,
4
(
2
), pp.
291
302
.
43.
Ling
,
M.
,
Cao
,
J.
,
Li
,
Q.
, and
Zhuang
,
J.
,
2018
, “
Design, Pseudostatic Model, and Pvdf-Based Motion Sensing of a Piezo-actuated xyz Flexure Manipulator
,”
IEEE/ASME Trans. Mechatron.
,
23
(
6
), pp.
2837
2848
.
44.
Jensen
,
K. A.
,
Lusk
,
C. P.
, and
Howell
,
L. L.
,
2006
, “
An xyz Micromanipulator With Three Translational Degrees of Freedom
,”
Robotica
,
24
(
3
), pp.
305
314
.
45.
Dang
,
M. P.
,
Le
,
H. G.
,
Phan
,
T. T.
,
Chau
,
N. L.
, and
Dao
,
T.
,
2022
, “
Design and Optimization for a New xyz Micropositioner With Embedded Displacement Sensor for Biomaterial Sample Probing Application
,”
Sensors
,
21
(
22
), p.
8204
.
46.
Rubbert
,
L.
,
Bitterli
,
R.
,
Ferrier
,
N.
,
Fifanski
,
S.
,
Vardi
,
I.
, and
Henein
,
S.
,
2016
, “
Isotropic Springs Based on Parallel Flexure Stages
,”
Precis. Eng.
,
43
, pp.
132
145
.
47.
Shan
,
X.
,
Angeles
,
J.
, and
Forbes
,
J. R.
,
2020
, “
A Class of Biaxial Micro/Meso-Scale Structures for Isotropic In-Plane Inertial Sensing and Actuation: Design, Fabrication and Experiments
,”
Microsyst. Technol.
,
26
(
8
), pp.
2639
2648
.
48.
Hopkins
,
J. B.
, and
McCalib
,
D.
,
2016
, “
Synthesizing Multi-axis Flexure Systems With Decoupled Actuators
,”
Precis. Eng.
,
46
, pp.
206
220
.
49.
Awtar
,
S.
,
Ustick
,
J.
, and
Sen
,
S.
,
2013
, “
An XYZ Parallel-Kinematic Flexure Mechanism With Geometrically Decoupled Degrees of Freedom
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
015001
.
50.
Li
,
H.
, and
Hao
,
G.
,
2017
, “
Constraint-Force-Based Approach of Modelling Compliant Mechanisms: Principle and Application
,”
Precis. Eng.
,
47
, pp.
158
181
.
51.
Taghirad
,
H. D.
,
2013
,
Parallel Robots: Mechanics and Control
,
CRC Press
,
Boca Raton, FL
, pp.
24
42
.
52.
Kahrobaiyan
,
M. H.
,
Thalmann
,
E.
,
Rubbert
,
L.
,
Vardi
,
I.
, and
Henein
,
S.
,
2018
, “
Gravity-Insensitive Flexure Pivot Oscillators
,”
ASME J. Mech. Des.
,
140
(
7
), p.
075002
.
You do not currently have access to this content.