Abstract

Parallelogram flexure mechanism (PFM) is a common flexure module that is widely used as a building block in the design and manufacturing of flexure-based XY motion stages that provide in-plane degrees-of-freedom (DoFs). In such motion stages, low in-plane stiffness along the DoF helps increase the DoF range of motion and reduce the actuation effort. At the same time, high out-of-plane stiffness is paramount to suppress out-of-plane parasitic motions, support heavy payloads, and mitigate the negative impacts of out-of-plane resonant modes. Achieving both of these design objectives simultaneously is extremely challenging in PFMs and flexure mechanisms comprising PFMs due to the inherent tradeoff between the in-plane and out-of-plane stiffnesses. This paper resolves this tradeoff by proposing a novel multi-layer PFM architecture, referred to as the sandwich PFM, that achieves significant improvements in the out-of-plane translational and rotational stiffnesses compared to conventional single-layer PFMs without impacting the in-plane DoF stiffness. Analytical models will be derived for the in-plane and out-of-plane stiffnesses of the sandwich PFM, which closely match the Finite Element Analysis (FEA) results. Several design insights into the performance of the sandwich PFM are discussed using the analytical stiffness models, and a general procedure is proposed to design a sandwich PFM.

References

1.
Nikooienejad
,
N.
,
Maroufi
,
M.
, and
Moheimani
,
S. R.
,
2019
, “
Characterization of a Tilted-Beam Piezoresistive MEMS Sensor With Current-Drive Readout Circuit
,”
Proceeding of the American Control Conference (ACC)
,
Philadelphia, PA
,
July 10–12
, pp.
2483
2488
.
2.
Olfatnia
,
M.
,
Sood
,
S.
,
Gorman
,
J. J.
, and
Awtar
,
S.
,
2012
, “
Large Stroke Electrostatic Comb-Drive Actuators Enabled by a Novel Flexure Mechanism
,”
J. Microelectromech. Syst.
,
22
(
2
), pp.
483
494
.
3.
Yao
,
T.-F.
,
Duenner
,
A.
, and
Cullinan
,
M.
,
2017
, “
In-Line Dimensional Metrology in Nanomanufacturing Systems Enabled by a Passive Semiconductor Wafer Alignment Mechanism
,”
J. Micro- Nano-Manuf.
,
5
(
1
), p.
011001
.
4.
Yao
,
T.-F.
,
Connolly
,
L. G.
, and
Cullinan
,
M.
,
2019
, “
Expanded Area Metrology for Tip-Based Wafer Inspection in the Nanomanufacturing of Electronic Devices
,”
J. Micro/Nanolithogr. MEMS MOEMS
,
18
(
3
), p.
034003
.
5.
Yao
,
T.-F.
,
Duenner
,
A.
, and
Cullinan
,
M.
,
2017
, “
In-Line Metrology of Nanoscale Features in Semiconductor Manufacturing Systems
,”
Precis. Eng.
,
47
(
1
), pp.
147
157
.
6.
Yong
,
Y. K.
, and
Mohemani
,
S. R.
,
2012
, “
A z-Scanner Design for High-Speed Scanning Probe Microscopy
,”
IEEE International Conference on Robotics and Automation
,
St. Paul, MN
,
May 14–18
, IEEE, pp.
4780
4785
.
7.
Weckenmann
,
A.
, and
Hoffmann
,
J.
,
2007
, “
Long Range 3 D Scanning Tunnelling Microscopy
,”
CIRP Ann.
,
56
(
1
), pp.
525
528
.
8.
Cai
,
K.
,
He
,
X.
,
Tian
,
Y.
,
Liu
,
X.
,
Zhang
,
D.
, and
Shirinzadeh
,
B.
,
2018
, “
Design of a XYZ Scanner for Home-Made High-Speed Atomic Force Microscopy
,”
Microsyst. Technol.
,
24
(
7
), pp.
3123
3132
.
9.
Tian
,
Y.
,
Cai
,
K.
,
Zhang
,
D.
,
Liu
,
X.
,
Wang
,
F.
, and
Shirinzadeh
,
B.
,
2019
, “
Development of a XYZ Scanner for Home-Made Atomic Force Microscope Based on FPAA Control
,”
Mech. Syst. Signal Process
,
131
(
1
), pp.
222
242
.
10.
Wei
,
Y.
, and
Xu
,
Q.
,
2019
, “
Design and Testing of a New Force-Sensing Cell Microinjector Based on Soft Flexure Mechanism
,”
IEEE Sens. J.
,
19
(
15
), pp.
6012
6019
.
11.
Almeida
,
A.
,
Andrews
,
G.
,
Jaiswal
,
D.
, and
Hoshino
,
K.
,
2019
, “
The Actuation Mechanism of 3D Printed Flexure-Based Robotic Microtweezers
,”
Micromachines
,
10
(
7
), p.
470
.
12.
Wang
,
P.
, and
Xu
,
Q.
,
2017
, “
Design and Testing of a Flexure-Based Constant-Force Stage for Biological Cell Micromanipulation
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
3
), pp.
1114
1126
.
13.
Tan
,
U.-X.
,
Latt
,
W. T.
,
Shee
,
C. Y.
, and
Ang
,
W. T.
,
2010
, “
A Low-Cost Flexure-Based Handheld Mechanism for Micromanipulation
,”
IEEE/ASME Trans. Mechatron.
,
16
(
4
), pp.
773
778
.
14.
Eleftheriou
,
E.
,
2012
, “
Nanopositioning for Storage Applications
,”
Annu. Rev. Control
,
36
(
2
), pp.
244
254
.
15.
Zhang
,
W.
,
Pang
,
M.
, and
Ru
,
C.
,
2016
, “Nanopositioning for Lithography and Data Storage,”
Nanopositioning Technologies: Fundamentals and Applications
,
C.
Ru
,
X.
Liu
, and
Y.
Sun
, eds.,
Springer
,
New York
, pp.
381
409
. doi.org/10.1007/978-3-319-23853-1_12.
16.
Cui
,
L.
,
Okwudire
,
C.
, and
Awtar
,
S.
,
2017
, “
Modeling Complex Nonminimum Phase Zeros in Flexure Mechanisms
,”
J. Dyn. Syst. Meas. Control
,
139
(
10
), p.
101001
.
17.
Awtar
,
S.
, and
Parmar
,
G.
,
2013
, “
Design of a Large Range XY Nanopositioning System
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021008
.
18.
Roy
,
N. K.
, and
Cullinan
,
M. A.
,
2018
, “
Design and Characterization of a Two-Axis, Flexure-Based Nanopositioning Stage With 50 mm Travel and Reduced Higher Order Modes
,”
Precis. Eng.
,
53
(
1
), pp.
236
247
.
19.
Cai
,
K.
,
Tian
,
Y.
,
Liu
,
X.
,
Zhang
,
D.
,
Shang
,
J.
, and
Shirinzadeh
,
B.
,
2019
, “
Development and Control Methodologies for 2-DOF Micro/Nano Positioning Stage With High Out-of-Plane Payload Capacity
,”
Rob. Comput. Integr. Manuf.
,
56
, pp.
95
105
.
20.
Zhu
,
J.
,
Hao
,
G.
,
Li
,
S.
, and
Kong
,
X.
,
2022
, “
A Compact Mirror-Symmetrical XY Compliant Parallel Manipulator for Minimizing Parasitic Rotations
,”
ASME J. Mech. Des.
,
144
(
7
), p.
073303
.
21.
Akbarzadeh
,
M. B.
,
Moeenfard
,
H.
, and
Awtar
,
S.
,
2020
, “
Nonlinear Dynamic Modeling of a Parallelogram Flexure
,”
Mech. Mach. Theory
,
153
(
1
), p.
103985
.
22.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
23.
Olfatnia
,
M.
,
Sood
,
S.
, and
Awtar
,
S.
,
2012
, “
Note: An Asymmetric Flexure Mechanism for Comb-Drive Actuators
,”
Rev. Sci. Instrum.
,
83
, p.
11
.
24.
Brouwer
,
D. M.
,
Otten
,
A.
,
Engelen
,
J.
,
Krijnen
,
B.
, and
Soemers
,
H.
,
2010
, “
Long-Range Elastic Guidance Mechanisms for Electrostatic Comb-Drive Actuators
,”
10th EUSPEN International Conference 2010: EUSPEN
, pp.
47
50
.
25.
Panas
,
R. M.
, and
Hopkins
,
J. B.
,
2015
, “
Eliminating Underconstraint in Double Parallelogram Flexure Mechanisms
,”
ASME J. Mech. Des.
,
137
(
9
), p.
092301
.
26.
Hao
,
G.
,
Li
,
H.
,
He
,
X.
, and
Kong
,
X.
,
2014
, “
Conceptual Design of Compliant Translational Joints for High-Precision Applications
,”
Front. Mech. Eng.
,
9
(
4
), pp.
331
343
.
27.
Nijenhuis
,
M.
,
Meijaard
,
J. P.
,
Mariappan
,
D.
,
Herder
,
J. L.
,
Brouwer
,
D. M.
, and
Awtar
,
S.
,
2017
, “
An Analytical Formulation for the Lateral Support Stiffness of a Spatial Flexure Strip
,”
ASME J. Mech. Des.
,
139
(
5
), p.
051401
.
28.
Brouwer
,
D. M.
,
Meijaard
,
J. P.
, and
Jonker
,
J. B.
,
2013
, “
Large Deflection Stiffness Analysis of Parallel Prismatic Leaf-Spring Flexures
,”
Precis. Eng.
,
37
(
3
), pp.
505
521
.
29.
Nijenhuis
,
M.
,
Meijaard
,
J.
, and
Brouwer
,
D.
,
2020
, “
A Spatial Closed-Form Nonlinear Stiffness Model for Sheet Flexures Based on a Mixed Variational Principle Including Third-Order Effects
,”
Precis. Eng.
,
66
, pp.
429
444
.
30.
Bai
,
R.
,
Chen
,
G.
, and
Awtar
,
S.
,
2021
, “
Closed-Form Solution for Nonlinear Spatial Deflections of Strip Flexures of Large Aspect Ratio Considering Second Order Load-Stiffening
,”
Mech. Mach. Theory
,
161
, p.
104324
.
31.
Pinskier
,
J.
, and
Shirinzadeh
,
B.
,
2019
, “
Topology Optimization of Leaf Flexures to Maximize In-Plane to Out-of-Plane Compliance Ratio
,”
Precis. Eng.
,
55
, pp.
397
407
.
32.
Radgolchin
,
M.
,
Rath
,
S.
, and
Awtar
,
S.
,
2024
, “
A Novel Sandwich Flexure Blade With Improved Out-of-Plane Stiffness
,”
Proceeding of the ASME IDETC
,
Washington, DC
,
Aug. 25–28
.
33.
Xu
,
Q.
,
2013
, “
Design and Development of a Compact Flexure-Based $ XY $ Precision Positioning System with Centimeter Range
,”
IEEE Trans. Ind. Electron.
,
61
(
2
), pp.
893
903
.
34.
Zhang
,
H.
,
Wu
,
Z.
, and
Xu
,
Q.
,
2020
, “
Design of a New XY Flexure Micropositioning Stage With a Large Hollow Platform
,”
Actuators
,
9
(
3
), p.
65
.
35.
Rao
,
S. S.
,
2019
,
Vibration of Continuous Systems
,
John Wiley & Sons
,
Hoboken, NJ
.
36.
Radgolchin
,
M.
, and
Moeenfard
,
H.
,
2017
, “
A Constraint Model for Beam Flexure Modules With an Intermediate Semi-Rigid Element
,”
Int. J. Mech. Sci.
,
122
, pp.
167
183
.
You do not currently have access to this content.