Fiber-reinforced elastomeric enclosures (FREEs) generate sophisticated motions, when pressurized, including axial rotation, extension, and compression, and serve as fundamental building blocks for soft robots in a variety of applications. However, most modeling techniques employed by researchers do not capture the key characteristics of FREEs to enable development of robust design and control schemes. Accurate and computationally efficient models that capture the nonlinearity of fibers and elastomeric components are needed. This paper presents a continuum model that captures the nonlinearities of the fiber and elastomer components as well as nonlinear relationship between applied pressure, deformation, and output forces and torque. One of the key attributes of this model is that it captures the behavior of FREEs in a computationally tractable manner with a minimum burden on experimental parameter determination. Without losing generality of the model, we validate it for a FREE with one fiber family, which is the simplest system exhibiting a combination of elongation and twist when pressurized. Experimental data in multiple kinematic configurations show agreement between our model prediction and the moments that the actuators generate. The model can be used to not only determine operational parameters but also to solve inverse problems, i.e., in design synthesis.

References

1.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
2.
Marchese
,
A. D.
,
Onal
,
C. D.
, and
Rus
,
D.
,
2014
, “
Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators
,”
Soft Rob.
,
1
(
1
), pp.
75
87
.
3.
Suzumori
,
K.
,
Endo
,
S.
,
Kanda
,
T.
,
Kato
,
N.
, and
Suzuki
,
H.
,
2007
, “
A Bending Pneumatic Rubber Actuator Realizing Soft-Bodied Manta Swimming Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Rome, Italy, Apr. 10–14, pp.
4975
4980
.
4.
Shepherd
,
R. F.
,
Ilievski
,
F.
,
Choi
,
W.
,
Morin
,
S. A.
,
Stokes
,
A. A.
,
Mazzeo
,
A. D.
,
Chen
,
X.
,
Wang
,
M.
, and
Whitesides
,
G. M.
,
2011
, “
Multigait Soft Robot
,”
Proc. Natl. Acad. Sci.
,
108
(
51
), pp.
20400
20403
.
5.
Park
,
Y.-L.
,
Chen
,
B.-R.
,
Pérez-Arancibia
,
N. O.
,
Young
,
D.
,
Stirling
,
L.
,
Wood
,
R. J.
,
Goldfield
,
E. C.
, and
Nagpal
,
R.
,
2014
, “
Design and Control of a Bio-Inspired Soft Wearable Robotic Device for Ankle–Foot Rehabilitation
,”
Bioinspiration Biomimetics
,
9
(
1
), p.
016007
.
6.
Sasaki
,
D.
,
Noritsugu
,
T.
, and
Takaiwa
,
M.
,
2005
, “
Development of Active Support Splint Driven by Pneumatic Soft Actuator (Assist)
,”
IEEE International Conference on Robotics and Automation
(
ICRA
2005), Barcelona, Spain, Apr. 18–22, pp.
520
525
.
7.
Martinez
,
R. V.
,
Branch
,
J. L.
,
Fish
,
C. R.
,
Jin
,
L.
,
Shepherd
,
R. F.
,
Nunes
,
R.
,
Suo
,
Z.
, and
Whitesides
,
G. M.
,
2013
, “
Robotic Tentacles With Three-Dimensional Mobility Based on Flexible Elastomers
,”
Adv. Mater.
,
25
(
2
), pp.
205
212
.
8.
McMahan
,
W.
,
Chitrakaran
,
V.
,
Csencsits
,
M.
,
Dawson
,
D.
,
Walker
,
I. D.
,
Jones
,
B. A.
,
Pritts
,
M.
,
Dienno
,
D.
,
Grissom
,
M.
, and
Rahn
,
C. D.
,
2006
, “
Field Trials and Testing of the Octarm Continuum Manipulator
,”
IEEE International Conference on Robotics and Automation
(
ICRA
2006), Orlando, FL, May 15–19, pp.
2336
2341
.
9.
Kota
,
S.
,
2014
, “
Shape-Shifting Things to Come
,”
Sci. Am.
,
310
(
5
), pp.
58
65
.
10.
Bishop-Moser
,
J.
,
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2012
, “
Design of Soft Robotic Actuators Using Fluid-Filled Fiber-Reinforced Elastomeric Enclosures in Parallel Combinations
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Vilamoura, Portugal, Oct. 7–12, pp.
4264
4269
.
11.
Bishop-Moser
,
J.
,
Krishnan
,
G.
, and
Kota
,
S.
,
2013
, “
Force and Moment Generation of Fiber-Reinforced Pneumatic Soft Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Japan, Nov. 3–7, pp.
4460
4465
.
12.
Bishop-Moser
,
J.
, and
Kota
,
S.
,
2015
, “
Design and Modeling of Generalized Fiber-Reinforced Pneumatic Soft Actuators
,”
IEEE Trans. Rob.
,
31
(
3
), pp.
536
545
.
13.
Tondu
,
B.
, and
Lopez
,
P.
,
2000
, “
Modeling and Control of McKibben Artificial Muscle Robot Actuators
,”
IEEE Control Syst.
,
20
(
2
), pp.
15
38
.
14.
Shan
,
Y.
,
Philen
,
M. P.
,
Bakis
,
C. E.
,
Wang
,
K.-W.
, and
Rahn
,
C. D.
,
2006
, “
Nonlinear-Elastic Finite Axisymmetric Deformation of Flexible Matrix Composite Membranes Under Internal Pressure and Axial Force
,”
Compos. Sci. Technol.
,
66
(
15
), pp.
3053
3063
.
15.
Connolly
,
F.
,
Walsh
,
C. J.
, and
Bertoldi
,
K.
,
2017
, “
Automatic Design of Fiber-Reinforced Soft Actuators for Trajectory Matching
,”
Proc. Natl. Acad. Sci.
,
114
(
1
), pp.
51
56
.
16.
Singh
,
G.
, and
Krishnan
,
G.
,
2017
, “
A Constrained Maximization Formulation to Analyze Deformation of Fiber Reinforced Elastomeric Actuators
,”
Smart Mater. Struct.
,
26
(
6
), p.
065024
.
17.
Bruder
,
D.
,
Sedal
,
A.
,
Bishop-Moser
,
J.
,
Kota
,
S.
, and
Vasudevan
,
R.
,
2017
, “
Model Based Control of Fiber Reinforced Elastofluidic Enclosures
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Singapore, May 29–June 3, pp.
5539
5544
.
18.
Krishnan
,
G.
,
Bishop-Moser
,
J.
,
Kim
,
C.
, and
Kota
,
S.
,
2015
, “
Kinematics of a Generalized Class of Pneumatic Artificial Muscles
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041014
.
19.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity Phys. Sci. Solids
,
61
(
1–3
), pp.
1
48
.
20.
Heinrich
,
C.
,
Aldridge
,
M.
,
Wineman
,
A.
,
Kieffer
,
J.
,
Waas
,
A. M.
, and
Shahwan
,
K.
,
2012
, “
The Influence of the Representative Volume Element (RVE) Size on the Homogenized Response of Cured Fiber Composites
,”
Modell. Simul. Mater. Sci. Eng.
,
20
(
7
), p.
075007
.
21.
Gent
,
A. N.
,
2012
,
Engineering With Rubber: How to Design Rubber Components
,
Carl Hanser Verlag GmbH Co KG
,
Cincinnati, OH
.
22.
Ogden
,
R. W.
,
1997
,
Non-Linear Elastic Deformations
,
Courier
Corporation, North Chelmsford, MA
.
23.
Demirkoparan
,
H.
, and
Pence
,
T. J.
,
2007
, “
Swelling of an Internally Pressurized Nonlinearly Elastic Tube With Fiber Reinforcing
,”
Int. J. Solids Struct.
,
44
(
11–12
), pp.
4009
4029
.
24.
Fung
,
Y.-C.
, and
Tong
,
P.
,
2001
,
Classical and Computational Solid Mechanics
,
World Scientific
,
Singapore
.
25.
Pipkin
,
A.
, and
Rivlin
,
R.
,
1963
, “
Minimum-Weight Design for Pressure Vessels Reinforced With Inextensible Fibers
,”
ASME J. Appl. Mech.
,
30
(
1
), pp.
103
108
.
26.
Peng
,
X.
, and
Cao
,
J.
,
2005
, “
A Continuum Mechanics-Based Non-Orthogonal Constitutive Model for Woven Composite Fabrics
,”
Composites, Part A
,
36
(
6
), pp.
859
874
.
27.
Liu
,
W.
, and
Rahn
,
C.
,
2003
, “
Fiber-Reinforced Membrane Models of McKibben Actuators
,”
ASME J. Appl. Mech.
,
70
(
6
), pp.
853
859
.
You do not currently have access to this content.