The design of an innovative spherical mechanism with three degrees-of-freedom (DOFs) for a shoulder joint exoskeleton is presented in this paper. The spherical mechanism is designed with a double parallelogram linkage (DPL), which connects two revolute joints to implement the motion as a spherical joint, while maintaining the remote center (RC) of rotation. The design has several new features compared to the current state-of-the-art: (1) a relative large range of motion (RoM) free of singularity, (2) high overall stiffness, (3) lightweight, and (4) compact, which make it suitable for assistive exoskeletons. In this paper, the kinematics and singularities are analyzed for the spherical mechanism and DPL. Dimensional analysis is carried out to find the design with maximum RoM. The new shoulder joint is finally designed, constructed, and integrated in a four degree-of-freedom wearable upper-body exoskeleton. A finite element analysis (FEA) study is used to assess the structural stiffness of the proposed design in comparison to the conventional 3R mechanism.

References

1.
Sylla
,
N.
,
Bonnet
,
V.
,
Colledani
,
F.
, and
Fraisse
,
P.
,
2014
, “
Ergonomic Contribution of ABLE Exoskeleton in Automotive Industry
,”
Int. J. Ind. Ergonom.
,
44
(
4
), pp.
475
481
.
2.
Bogue
,
R.
,
2009
, “
Exoskeletons and Robotic Prosthetics: A Review of Recent Developments
,”
Ind. Robot: An Int. J.
,
36
(
5
), pp.
421
427
.
3.
Yamamoto
,
K.
,
Hyodo
,
K.
,
Ishii
,
M.
, and
Matsuo
,
T.
,
2001
, “
Development of Power Assisting Suit for Assisting Nurse Labor
,”
Trans. Jpn. Soc. Mech. Eng. Ser. C
,
67
(
657
), pp.
1499
1506
.
4.
Lo
,
H. S.
, and
Xie
,
S. Q.
,
2012
, “
Exoskeleton Robots for Upper-Limb Rehabilitation: State of the Art and Future Prospects
,”
Med. Eng. Phys.
,
34
(
3
), pp.
261
268
.
5.
Gopura
,
R.
,
Bandara
,
D.
,
Kiguchi
,
K.
, and
Man
,
G.
,
2015
, “
Developments in Hardware Systems of Active Upper-Limb Exoskeleton Robots: A Review
,”
Rob. Auton. Syst.
,
75
(Pt. B), pp.
203
220
.
6.
Engin
,
A. E.
,
1980
, “
On the Biomechanics of the Shoulder Complex
,”
J. Biomech.
,
13
(
7
), pp.
575
590
.
7.
Naidu
,
D.
,
Stopforth
,
R.
,
Bright
,
G.
, and
Davrajh
,
S.
,
2011
, “
A 7 DOF Exoskeleton Arm: Shoulder, Elbow, Wrist and Hand Mechanism for Assistance to Upper Limb Disabled Individuals
,”
IEEE AFRICON Conference
, Livingstone, Zambia, Sept. 13–15,pp.
13
15
.
8.
Ball
,
S. J.
,
Brown
,
I. E.
, and
Scott
,
S. H.
,
2007
, “
MEDARM: A Rehabilitation Robot With 5DOF at the Shoulder Complex
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Zurich, Switzerland, Sept. 4–7.
9.
Nef
,
T.
,
Guidali
,
M.
, and
Riener
,
R.
,
2009
, “
ARMin III Arm Therapy Exoskeleton With an Ergonomic Shoulder Actuation
,”
Appl. Bionics Biomech.
,
6
(
2
), pp.
127
142
.
10.
Carmichael
,
M. G.
, and
Liu
,
D. K.
,
2015
, “
Human Biomechanical Model Based Optimal Design of Assistive Shoulder Exoskeleton
,” Field and Service Robotics: Results of the 9th International Conference,
L.
Mejias
,
P.
Corke
, and
J.
Roberts
, eds., Springer International, Cham, Switzerland, pp.
245
258
.
11.
Perry
,
J. C.
,
Rosen
,
J.
, and
Burns
,
S.
,
2007
, “
Upper-Limb Powered Exoskeleton Design
,”
IEEE/ASME Trans. Mechatronics
,
12
(
4
), pp.
408
417
.
12.
Jung
,
Y.
, and
Bae
,
J.
,
2013
, “
Kinematic Analysis of a 5 DOF Upper-Limb Exoskeleton With a Tilted and Vertically Translating Shoulder Joint
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Wollongong, Australia, July 9–12, pp.
1643
1648
.
13.
Yan
,
H.
,
Yang
,
C.
,
Zhang
,
Y.
, and
Wang
,
Y.
,
2014
, “
Design and Validation of a Compatible 3-Degrees of Freedom Shoulder Exoskeleton With an Adaptive Center of Rotation
,”
ASME J. Mech. Des.
,
136
(
7
), p. 071006.
14.
Chakarov
,
D.
,
Veneva
,
I.
,
Tsveov
,
M.
, and
Tiankov
,
T.
,
2014
, “
New Exoskeleton Arm Concept Design and Actuation for Haptic Interaction With Virtual Objects
,”
J. Theor. Appl. Mech.
,
44
(
4
), pp.
3
14
.
15.
Lo
,
H. S.
, and
Xie
,
S.
,
2014
, “
Optimization and Analysis of a Redundant 4R Spherical Wrist Mechanism for a Shoulder Exoskeleton
,”
Robotica
,
32
(
8
), pp.
1191
1211
.
16.
Klein
,
J.
,
Spencer
,
S.
,
Allington
,
J.
,
Bobrow
,
J. E.
, and
Reinkensmeyer
,
D. J.
,
2010
, “
Optimization of a Parallel Shoulder Mechanism to Achieve a High-Force, Low-Mass, Robotic-Arm Exoskeleton
,”
IEEE Trans. Rob.
,
26
(
4
), pp.
710
715
.
17.
Hunt
,
J.
,
Lee
,
H.
, and
Artemiadis
,
P.
,
2016
, “
A Novel Shoulder Exoskeleton Robot Using Parallel Actuation and a Passive Slip Interface
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011002
.
18.
Hsieh
,
H. C.
,
Chen
,
D. F.
,
Chien
,
L.
, and
Lan
,
C. C.
,
2017
, “
Design of a Parallel Actuated Exoskeleton for Adaptive and Safe Robotic Shoulder Rehabilitation
,”
IEEE/ASME Trans. Mechatronics
,
22
(
5
), pp.
2034
2045
.
19.
Cui
,
X.
,
Chen
,
W.
,
Jin
,
X.
, and
Agrawal
,
S. K.
,
2017
, “
Design of a 7-DOF Cable-Driven Arm Exoskeleton (CAREX-7) and a Controller for Dexterous Motion Training or Assistance
,”
IEEE/ASME Trans. Mechatronics
,
22
(
1
), pp.
161
172
.
20.
Xu
,
K.
,
Zhao
,
J.
,
Qiu
,
D.
, and
Wang
,
Y.
,
2014
, “
A Pilot Study of a Continuum Shoulder Exoskeleton for Anatomy Adaptive Assistances
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041011
.
21.
Bai
,
S.
,
Christensen
,
S.
, and
Islam
,
M. R. U.
,
2017
, “
An Upper-Body Exoskeleton With a Novel Shoulder Mechanism for Assistive Applications
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Munich, Germany, July 3–7, pp.
1041
1046
.
22.
Koo
,
D.
,
Chang
,
P. H.
,
Sohn
,
M. K.
, and
Shin
,
J. H.
,
2011
, “
Shoulder Mechanism Design of an Exoskeleton Robot for Stroke Patient Rehabilitation
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Zurich, Switzerland, June 29–July 1, pp.
8
13
.
23.
Culham
,
E.
, and
Peat
,
M.
,
1993
, “
Functional Anatomy of the Shoulder Complex
,”
J. Orthopadeic Sports Phys. Ther.
,
18
(
1
), pp.
342
350
.
24.
Christensen
,
S.
, and
Bai
,
S.
,
2017
, “
A Novel Shoulder Mechanism With a Double Parallelogram Linkage for Upper-Body Exoskeletons
,” Second International Symposium on Wearable Robotics (WeRob), Segovia, Spain, Oct. 18–21, pp.
51
56
.
25.
Li
,
J.
,
Zhang
,
G.
,
Xing
,
Y.
,
Liu
,
H.
, and
Wang
,
S.
,
2014
, “
A Class of 2-Degree-of-Freedom Planar Remote Center-of-Motion Mechanisms Based on Virtual Parallelograms
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031014
.
26.
Li
,
J.
,
Xing
,
Y.
,
Liang
,
K.
, and
Wang
,
S.
,
2015
, “
Kinematic Design of a Novel Spatial Remote Center-of-Motion Mechanism for Minimally Invasive Surgical Robot
,”
J. Med. Dev.
,
9
(
1
), p.
011003
.
27.
Hadavand
,
M.
,
Mirbagheri
,
A.
,
Behzadipour
,
S.
, and
Farahmand
,
F.
,
2014
, “
A Novel Remote Center of Motion Mechanism for the Force-Reflective Master Robot of Haptic Tele-Surgery Systems
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
10
(
2
), pp.
129
139
.
28.
Bai
,
G.
,
Li
,
D.
,
Wei
,
S.
, and
Liao
,
Q.
,
2014
, “
Kinematics and Synthesis of a Type of Mechanisms With Multiple Remote Centers of Motion
,”
J. Mech. Eng. Sci.
,
228
(
18
), pp.
3430
3440
.
29.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2005
,
Robot Modeling and Control
,
Wiley
, Hoboken, NJ.
30.
Peebles
,
L.
,
Norris
,
B.
, and
Trade
,
G. B. D.
,
1998
,
Adultdata: The Handbook of Adult Anthropometric and Strength Measurements: Data for Design Safety
,
Government Consumer Safety Research
, Nottingham, UK.
31.
Teng
,
C. P.
,
Bai
,
S.
, and
Angeles
,
J.
,
2007
, “
Shape Synthesis in Mechanical Design
,”
Acta Polytechnica, Czech Tech. Univ. Prague
,
47
(
6
), pp.
56
62
.
32.
Wu
,
G.
,
Bai
,
S.
, and
Kepler
,
J.
,
2014
, “
Mobile Platform Center Shift in Spherical Parallel Manipulators With Flexible Limbs
,”
Mech. Mach. Theory
,
75
, pp.
12
26
.
You do not currently have access to this content.