Abstract

This paper presents the design, analysis, and testing of a novel multimodal grasper having the capabilities of shape conformation, within-hand manipulation, and a built-in compact mechanism to vary the forces at the contact surface. The proposed grasper has two important qualities: versatility and less complexity. The former refers to the ability to grasp a range of objects having different geometrical shape, size, and payload and perform in-hand manipulations such as rolling and sliding, and the latter refers to the uncomplicated design, and ease of planning and control strategies. Increasing the number of functions performed by the grasper to adapt to a variety of tasks in structured and unstructured environments without increasing the mechanical complexity is the main interest of this research. The proposed grasper consists of two hybrid jaws having a rigid inner structure encompassed by a flexible, active gripping surface. The flexibility of the active surface has been exploited to achieve shape conformation, and the same has been utilized with a compact mechanism, introduced in the jaws, to vary the contact forces while grasping and manipulating an object. Simple and scalable structure, compactness, low cost, and simple control scheme are the main features of the proposed design. Detailed kinematic and static analysis are presented to show the capability of the grasper to adjust and estimate the contact forces without using a force sensor. Experiments are conducted on the fabricated prototype to validate the different modes of operation and to evaluate the advantages of the proposed concept.

References

1.
Monkman
,
G. J.
,
Hesse
,
S.
,
Steinmann
,
R.
, and
Schunk
,
H.
,
2006
,
Robot Grippers
,
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
.
2.
Hirose
,
S.
, and
Umetani
,
Y.
,
1978
, “
The Development of Soft Gripper for the Versatile Robot Hand
,”
Mech. Mach. Theory
,
13
(
3
), pp.
351
359
.
3.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2010
, “
The Highly Adaptive SDM Hand: Design and Performance Evaluation
,”
Int. J. Rob. Res.
,
29
(
5
), pp.
585
597
.
4.
Amend
,
J. R.
,
Brown
,
E.
,
Rodenberg
,
N.
,
Jaeger
,
H. M.
, and
Lipson
,
H.
,
2012
, “
A Positive Pressure Universal Gripper Based on the Jamming of Granular Material
,”
IEEE Trans. Robot.
,
28
(
2
), pp.
341
350
.
5.
Jacobsen
,
S.
,
Iversen
,
E.
,
Knutti
,
D.
,
Johnson
,
R.
, and
Biggers
,
K.
,
1986
, “
Design of the Utah/M.I.T. Dextrous Hand
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
San Francisco, CA
,
Apr. 7–10
, pp.
1520
1532
.
6.
Lovchik
,
C. S.
, and
Diftler
,
M. A.
,
1999
, “
The Robonaut Hand: A Dexterous Robot Hand for Space
,”
Proceedings of the IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C)
,
Detroit, MI
,
May 10–15
, pp.
907
912
.
7.
Bicchi
,
A.
, and
Kumar
,
V.
,
2000
, “
Robotic Grasping and Contact: A Review
,”
Proceedings ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065)
,
San Francisco, CA
,
Apr. 24–28
, pp.
348
353
.
8.
Mason
,
M. T.
,
Rodriguez
,
A.
,
Srinivasa
,
S. S.
, and
Vazquez
,
A. S.
,
2012
, “
Autonomous Manipulation With a General-Purpose Simple Hand
,”
Int. J. Rob. Res.
,
31
(
5
), pp.
688
703
.
9.
Crisman
,
J. D.
,
Kanojia
,
C.
, and
Zeid
,
I.
,
1996
, “
Graspar: A Flexible, Easily Controllable Robotic Hand
,”
IEEE Robot. Autom. Mag.
,
3
(
2
), pp.
32
38
.
10.
Gosselin
,
C.
,
Pelletier
,
F.
, and
Laliberte
,
T.
,
2008
, “
An Anthropomorphic Underactuated Robotic Hand With 15 Dofs and a Single Actuator
,”
IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
749
754
.
11.
Jung
,
G.-P.
,
Koh
,
J.-S.
, and
Cho
,
K.-J.
,
2013
, “
Underactuated Adaptive Gripper Using Flexural Buckling
,”
IEEE Trans. Robot.
,
29
(
6
), pp.
1396
1407
.
12.
Jin
,
J.
,
Yuen
,
S. L.
,
Lee
,
Y. H.
,
Jun
,
C.
,
Kim
,
Y. B.
,
Lee
,
S.
,
You
,
B.-J.
, and
Doh
,
N. L.
,
2013
, “
Minimal Grasper: A Practical Robotic Grasper With Robust Performance for Pick-and-Place Tasks
,”
IEEE Trans. Ind. Electron.
,
60
(
9
), pp.
3796
3805
.
13.
Bullock
,
I. M.
, and
Dollar
,
A. M.
,
2011
, “
Classifying Human Manipulation Behavior
,”
IEEE International Conference on Rehabilitation Robotics
,
Zurich, Switzerland
,
June 29–July 1
, pp.
1
6
.
14.
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2011
, “
On Dexterity and Dexterous Manipulation
,”
15th International Conference on Advanced Robotics
,
Tallinn, Estonia
,
June 20–23
,
IEEE
, pp.
1
7
.
15.
Deimel
,
R.
, and
Brock
,
O.
,
2016
, “
A Novel Type of Compliant and Underactuated Robotic Hand for Dexterous Grasping
,”
Int. J. Rob. Res.
,
35
(
1–3
), pp.
161
185
.
16.
Birglen
,
L.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2008
,
Underactuated Robotic Hands
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
.
17.
Ulrich
,
N.
,
Paul
,
R.
, and
Bajcsy
,
R.
,
1988
, “
A Medium-Complexity Compliant End Effector
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Philadelphia, PA
,
Apr. 24–29
, pp.
434
436
.
18.
Mason
,
M. T.
,
Srinivasa
,
S. S.
, and
Vazquez
,
A. S.
,
2011
, “
Generality and Simple Hands
,”
Springer Tracts in Advanced Robotics
, Vol.
70
,
C.
Pradalier
,
R.
Siegwart
, and
G.
Hirzinger
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
345
361
.
19.
Cutkosky
,
M. R.
,
1989
, “
On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks
,”
IEEE Trans. Robot. Autom.
,
5
(
3
), pp.
269
279
.
20.
Vazquez
,
A. S.
,
Payo
,
I.
,
Fernandez
,
R.
,
Becedas
,
J.
, and
Jimenez
,
J. J.
,
2013
, “
Design Parameters of Flexible Grippers for Grasping
,”
IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
,
IEEE
, pp.
2060
2066
.
21.
Krut
,
S.
,
2005
, “
A Force-Isotropic Underactuated Finger
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
, pp.
2314
2319
.
22.
Laliberte
,
T.
, and
Gosselin
,
M. C.
,
2001
, “
Underactuation in Space Robotic Hands
,”
Proceedings of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space
,
Montreal, Canada
,
June 18–22
, pp.
1
8
.
23.
Kragten
,
G. A.
,
Kool
,
A. C.
, and
Herder
,
J. L.
,
2009
, “
Ability to Hold Grasped Objects by Underactuated Hands: Performance Prediction and Experiments
,”
IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, pp.
2493
2498
.
24.
Rojas
,
N.
,
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2016
, “
The GR2 Gripper: An Underactuated Hand for Open-Loop In-Hand Planar Manipulation
,”
IEEE Trans. Robot.
,
32
(
3
), pp.
763
770
.
25.
Dafle
,
N. C.
,
Rodriguez
,
A.
,
Paolini
,
R.
,
Tang
,
B.
,
Srinivasa
,
S. S.
,
Erdmann
,
M.
,
Mason
,
M. T.
,
Lundberg
,
I.
,
Staab
,
H.
, and
Fuhlbrigge
,
T.
,
2014
, “
Extrinsic Dexterity: In-Hand Manipulation With External Forces
,”
IEEE International Conference on Robotics and Automation
,
Hong Kong, China
,
May 31–June 7
, pp.
1578
1585
.
26.
Tadakuma
,
K.
,
Tadakuma
,
R.
,
Higashimori
,
M.
, and
Kaneko
,
M.
,
2012
, “
Robotic Finger Mechanism Equipped Omnidirectional Driving Roller With Two Active Rotational Axes
,”
IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18
, pp.
3523
3524
.
27.
Higashimori
,
M.
,
Jeong
,
H.
,
Ishii
,
I.
,
Kaneko
,
M.
,
Namiki
,
A.
, and
Ishikawa
,
M.
,
2005
, “
A New Four-Fingered Robot Hand With Dual Turning Mechanism
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
, pp.
2679
2684
.
28.
Bicchi
,
A.
, and
Marigo
,
A.
,
2002
, “
Dexterous Grippers: Putting Nonholonomy to Work for Fine Manipulation
,”
Int. J. Rob. Res.
,
21
(
5–6
), pp.
427
442
.
29.
Knepper
,
R. A.
,
Layton
,
T.
,
Romanishin
,
J.
, and
Rus
,
D.
,
2013
, “
IkeaBot: An Autonomous Multi-Robot Coordinated Furniture Assembly System
,”
IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
855
862
.
30.
Spiers
,
A. J.
,
Calli
,
B.
, and
Dollar
,
A. M.
,
2018
, “
Variable-Friction Finger Surfaces to Enable Within-Hand Manipulation via Gripping and Sliding
,”
IEEE Robot. Autom. Lett.
,
3
(
4
), pp.
4116
4123
.
31.
Tincani
,
V.
,
Catalano
,
M. G.
,
Farnioli
,
E.
,
Garabini
,
M.
,
Grioli
,
G.
,
Fantoni
,
G.
, and
Bicchi
,
A.
,
2012
, “
Velvet Fingers: A Dexterous Gripper With Active Surfaces
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura, Portugal
,
Oct. 7–12
, pp.
1257
1263
.
32.
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2016
, “
In-Hand Manipulation Primitives for a Minimal, Underactuated Gripper With Active Surfaces
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 5A: 40th Mechanisms and Robotics Conference
,
Charlotte, NC
,
Aug. 21–24
,
ASME
Paper No. DETC2016-60354, p.
V05AT07A072
.
33.
Kim
,
B. S.
, and
Song
,
J. B.
,
2011
, “
Object Grasping Using a 1 DOF Variable Stiffness Gripper Actuated by a Hybrid Variable Stiffness Actuator
,”
IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
4620
4625
.
34.
Giannaccini
,
M. E.
,
Georgilas
,
I.
,
Horsfield
,
I.
,
Peiris
,
B. H. P. M.
,
Lenz
,
A.
,
Pipe
,
A. G.
, and
Dogramadzi
,
S.
,
2014
, “
A Variable Compliance, Soft Gripper
,”
Auton. Robots
,
36
(
1–2
), pp.
93
107
.
35.
Shimoga
,
K. B.
, and
Goldenberg
,
A. A.
,
1996
, “
Soft Robotic Fingertips
,”
Int. J. Rob. Res.
,
15
(
4
), pp.
320
334
.
36.
Govindan
,
N.
,
Kovvali
,
S. S. V.
,
Chandrasekaran
,
K.
, and
Thondiyath
,
A.
,
2018
, “
GraspMan—A Novel Robotic Platform With Grasping, Manipulation, and Multimodal Locomotion Capability
,”
IEEE International Conference on Robotics and Automation
,
Brisbane, QLD, Australia
,
May 21–25
, pp.
7354
7359
.
You do not currently have access to this content.