This paper puts forward a linear variable stiffness joint (VSJ) based on the electromagnetic principle. The VSJ is constituted by an annular permanent magnet (PM) and coaxial cylindrical coil. The output force and stiffness are linearly proportional to the coil current. In consequence, the stiffness adjustment motor and mechanisms required by many common designs of VSJs are eliminated. A physical prototype of the electromagnetic VSJ is manufactured and tested. The results indicate that the prototype can achieve linear force-deflection characteristics and rapid stiffness variation response. Using an Arduino and H-bridge driver board, the electromagnetic compliance control system is developed in order to realize the precise control of the interaction force. The static force control error is no more than ±0.5 N, and the settling time can be controlled within only 40 ms. At last, an experiment of squeezing the raw egg is conducted. The experiment intuitively exhibits the performance of electromagnetic compliance in stable force control and keeping safe robot-environment interaction.

References

1.
Whitney
,
D. E.
,
1987
, “
Historical Perspective and State of the Art in Robot Force Control
,”
Int. J. Robot. Res.
,
6
(
1
), pp.
3
14
.
2.
Van Ham
,
R.
,
Sugar
,
T.
,
Vanderborght
,
B.
,
Hollander
,
K. W.
, and
Lefeber
,
D.
,
2009
, “
Compliant Actuator Designs
,”
IEEE Rob. Autom. Mag.
,
16
(
3
), pp.
81
94
.
3.
Wang
,
W.
,
Loh
,
R. N. K.
, and
Gu
,
E. Y.
,
1998
, “
Passive Compliance Versus Active Compliance in Robot-Based Automated Assembly Systems
,”
Ind. Robot.
,
25
(
1
), pp.
48
57
.
4.
Kim
,
B. S.
, and
Song
,
J. B.
,
2010
, “
Hybrid Dual Actuator Unit: A Design of a Variable Stiffness Actuator Based on an Adjustable Moment Arm Mechanism
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Anchorage, AK
,
May 3–7, 2010
, pp.
1655
1660
.
5.
Wang
,
Z.
,
Yip
,
H. M.
,
Navarro-Alarcon
,
D.
,
Li
,
P.
,
Liu
,
Y. H.
,
Sun
,
D.
,
Wang
,
H.
, and
Cheung
,
T. H.
,
2016
, “
Design of a Novel Compliant Safe Robot Joint With Multiple Working States
,”
IEEE-ASME Trans. Mech.
,
21
(
2
), pp.
1193
1198
.
6.
Malosio
,
M.
,
Spagnuolo
,
G.
,
Prini
,
A.
,
Tosatti
,
L. M.
, and
Legnani
,
G.
,
2017
, “
Principle of Operation of RotWWC-VSA, a Multi-Turn Rotational Variable Stiffness Actuator
,”
Mech. Mach. Theory
,
116
, pp.
34
49
.
7.
Petit
,
F.
,
Friedl
,
W.
,
Höppner
,
H.
, and
Grebenstein
,
M.
,
2015
, “
Analysis and Synthesis of the Bidirectional Antagonistic Variable Stiffness Mechanism
,”
IEEE-ASME Trans. Mech.
,
20
(
2
), pp.
684
695
.
8.
Jujjavarapu
,
S.
,
Memar
,
A.
,
Karami
,
M.
, and
Esfahani
,
E.
,
2019
, “
Variable Stiffness Mechanism for Suppressing Unintended Forces in Physical Human Robot Interaction
,”
ASME J. Mech. Robot.
,
11
(
2
), p.
020915
.
9.
Groothuis
,
S. S.
,
Rusticelli
,
G.
,
Zucchelli
,
A.
,
Stramigioli
,
S.
, and
Carloni
,
R.
,
2014
, “
The Variable Stiffness Actuator vsaUT-II: Mechanical Design, Modeling, and Identification
,”
IEEE-ASME Trans. Mech.
,
19
(
2
), pp.
589
597
.
10.
Jafari
,
A.
,
Tsagarakis
,
N. G.
,
Sardellitti
,
I.
, and
Caldwell
,
D. G.
,
2014
, “
A new Actuator With Adjustable Stiffness Based on a Variable Ratio Lever Mechanism
,”
IEEE-ASME Trans. Mech.
,
19
(
1
), pp.
55
63
.
11.
Awad
,
M. I.
,
Hussain
,
I.
,
Gan
,
D.
, and
Stefanini
,
C.
,
2019
, “
Passive Discrete Variable Stiffness Joint (PDVSJ-II): Modeling, Design, Characterization and Testing Towards Passive Haptic Interface
,”
ASME J. Mech. Robot.
,
11
(
1
), p.
011005
.
12.
Choi
,
J.
,
Hong
,
S.
,
Lee
,
W.
,
Kang
,
S.
, and
Kim
,
M.
,
2011
, “
A Robot Joint With Variable Stiffness Using Leaf Springs
,”
IEEE Trans. Robot.
,
27
(
2
), pp.
229
238
.
13.
Tao
,
Y.
,
Wang
,
T.
,
Wang
,
Y.
,
Guo
,
L.
,
Xiong
,
H.
, and
Xu
,
D.
,
2015
, “
A New Variable Stiffness Robot Joint
,”
Ind. Robot.
,
42
(
4
), pp.
371
378
.
14.
Wang
,
W.
,
Fu
,
X.
,
Li
,
Y.
, and
Yun
,
C.
,
2016
, “
Design of Variable Stiffness Actuator Based on Modified Gear–Rack Mechanism
,”
ASME J. Mech. Robot.
,
8
(
6
), p.
061008
.
15.
Galloway
,
K. C.
,
Clark
,
J. E.
, and
Koditschek
,
D. E.
,
2013
, “
Variable Stiffness Legs for Robust, Efficient, and Stable Dynamic Running
,”
ASME J. Mech. Robot.
,
5
(
1
), p.
011009
.
16.
Choi
,
J.
,
Park
,
S.
,
Lee
,
W.
, and
Kang
,
S. C.
,
2008
, “
Design of a Robot Joint With Variable Stiffness
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Pasadena, CA
,
May 19–23
, pp.
1760
1765
.
17.
Jayender
,
J.
,
Patel
,
R. V.
,
Nikumb
,
S.
, and
Ostojic
,
M.
,
2008
, “
Modeling and Control of Shape Memory Alloy Actuators
,”
IEEE Trans. Contr. Syst. Technol.
,
16
(
2
), pp.
279
287
.
18.
Secord
,
T. W.
, and
Asada
,
H. H.
,
2010
, “
A Variable Stiffness PZT Actuator Having Tunable Resonant Frequencies
,”
IEEE Trans. Robot.
,
26
(
6
), pp.
993
1005
.
19.
Shafer
,
A. S.
, and
Kermani
,
M. R.
,
2011
, “
On the Feasibility and Suitability of MR Fluid Clutches in Human-Friendly Manipulators
,”
IEEE-ASME Trans. Mech.
,
16
(
6
), pp.
1073
1082
.
20.
Jiang
,
A.
,
Ataollahi
,
A.
,
Althoefer
,
K.
,
Dasgupta
,
P.
, and
Nanayakkara
,
T.
,
2012
, “
A Variable Stiffness Joint by Granular Jamming
,”
Proceedings of the IDETC/CIE
,
Chicago, IL
,
Aug. 12–15
, pp.
267
275,
ASME Paper No. DETC2012-70670.
21.
Palli
,
G.
,
Berselli
,
G.
,
Melchiorri
,
C.
, and
Vassura
,
G.
,
2011
, “
Design of a Variable Stiffness Actuator Based on Flexures
,”
ASME J. Mech. Robot.
,
3
(
3
), p.
034501
.
22.
Ferrobotics
, “
ACF ACTIVE CONTACT FLANGE
,” https://www.ferrobotics.com/fileadmin/user_upload/ACF_Datasheet_EN_2018.pdf. Accessed July,
2018
,
23.
Pushcorp, Inc.
, “
AFD1000 Adjustable Force Device Manual
,” http://www.pushcorp.com/manuals/afd1000-manual.pdf, Accessed April,
2001
.
24.
Erlbacher
,
E. A.
,
2000
, “
Force Control Basics
,”
Ind. Robot.
,
27
(
1
), pp.
20
29
.
25.
Zhao
,
Y.
,
Yu
,
J.
,
Wang
,
H.
,
Chen
,
G.
, and
Lai
,
X.
,
2017
, “
Design of an Electromagnetic Prismatic Joint With Variable Stiffness
,”
Ind. Robot.
,
44
(
2
), pp.
222
230
.
26.
Robertson
,
W.
,
Cazzolato
,
B.
, and
Zander
,
A.
,
2012
, “
Axial Force Between a Thick Coil and a Cylindrical Permanent Magnet: Optimizing the Geometry of an Electromagnetic Actuator
”,
IEEE Trans. Magn.
,
48
(
9
), pp.
2479
2487
.
You do not currently have access to this content.