Abstract

Cable-driven parallel robots (CDPRs) have great prospects for high-speed applications because of their nature of low inertia and good dynamics. Existing high-speed CDPRs mainly adopt redundant cables to keep positive cable tensions. Redundant cables lead to complex and costly structure, and are likely to cause interference. In this study, a non-redundant CDPR for high-speed translational motions is designed with passive springs and parallel cables. First, the configuration of the CDPR is illustrated, and its kinematics and dynamics are studied. Then, the workspace of the CDPR is discussed in detail. The condition of positive cable tensions is proved. The influence of the springs’ layout on the workspace is analyzed. A method for determining the regular cylindrical operation workspace is proposed. Furthermore, the optimal design method for high-speed CDPRs with passive springs is developed. Performance indices for evaluating the force transmission are defined based on the matrix orthogonal degree. The geometric parameters are optimized based on the workspace and force transmission indices. The stiffness coefficient of the spring is determined based on the acceleration and cable tension requirements. Finally, the proposed CDPR and the traditional CDPR with redundant cables are compared through simulation. The results show that the designed CDPR possesses advantages in energy consumption and simple structure compared to CDPR with redundant cables.

References

1.
Gosselin
,
C.
,
2014
, “
Cable-Driven Parallel Mechanisms: State of the Art and Perspectives
,”
Mech. Eng. Rev.
,
1
(
1
), pp.
1
17
. 10.1299/mer.2014dsm0004
2.
Cone
,
L. L.
,
1985
, “
Skycam–An Aerial Robotic Camera System
,”
Byte
,
10
(
10
), pp.
122
132
.
3.
Tempel
,
P.
,
Herve
,
P. E.
,
Tempier
,
O.
,
Marc
,
G.
, and
Pott
,
A.
,
2017
, “
Estimating Inertial Parameters of Suspended Cable-Driven Parallel Robots—Use Case on CoGiRo
,”
2017 IEEE International Conference on Robotics and Automation
,
Singapore
,
May 29–June 3
, pp.
6093
6098
.
4.
Mao
,
Y.
,
Jin
,
X.
,
Gera
,
D. G.
,
Scholz
,
J. P.
, and
Agrawal
,
S. K.
,
2015
, “
Human Movement Training With a Cable Driven ARm EXoskeleton (CAREX)
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
1
), pp.
84
92
. 10.1109/TNSRE.2014.2329018
5.
Tang
,
X.
, and
Yao
,
R.
,
2011
, “
Dimensional Design on the Six-Cable Driven Parallel Manipulator of FAST
,”
ASME J. Mech. Des.
,
133
(
11
), p.
111012
. 10.1115/1.4004988
6.
Kawamura
,
S.
,
Kino
,
H.
, and
Won
,
C.
,
2000
, “
High-Speed Manipulation by Using Parallel Wire-Driven Robots
,”
Robotica
,
18
(
1
), pp.
13
21
. 10.1017/S0263574799002477
7.
Castelli
,
G.
,
Ottaviano
,
E.
, and
Rea
,
P.
,
2014
, “
A Cartesian Cable-Suspended Robot for Improving End-Users’ Mobility in an Urban Environment
,”
Rob. Comput.-Integr. Manuf.
,
30
(
3
), pp.
335
343
. 10.1016/j.rcim.2013.11.001
8.
Seon
,
J. A.
,
Park
,
S.
,
Ko
,
S. Y.
, and
Park
,
J-O.
,
2016
, “
Cable Configuration Analysis to Increase the Rotational Range of Suspended 6-DOF Cable Driven Parallel Robots
,”
16th International Conference on Control, Automation and Systems (ICCAS). IEEE, 2016
,
Gyeongju, South Korea
,
Oct. 16–19
, pp.
1047
1052
.
9.
Barnett
,
E.
, and
Gosselin
,
C.
,
2015
, “
Large-Scale 3D Printing With a Cable-Suspended Robot
,”
Addit. Manuf.
,
7
, pp.
27
44
. 10.1016/j.addma.2015.05.001
10.
Verhoeven
,
R.
,
2004
, “
Analysis of the Workspace of Tendon-Based Stewart Platforms
,”
Ph.D. thesis
,
University of Duisburg-Essen, North Rhine-Westphalia
,
Germany
.
11.
Bosscher
,
P.
,
Williams
,
R. L.
, and
Tummino
,
M.
,
2005
, “
A Concept for Rapidly-Deployable Cable Robot Search and Rescue Systems
,”
ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–28
, pp.
589
598
.
12.
Saber
,
O.
,
2015
, “
A Spatial Translational Cable Robot
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031006
. 10.1115/1.4028287
13.
Vu
,
D.
,
Barnett
,
E.
,
Zaccarin
,
A.
, and
Gosselin
,
C.
,
2018
, “On the Design of a Three-DOF Cable-Suspended Parallel Robot Based on a Parallelogram Arrangement of the Cables,”
Cable-Driven Parallel Robots. Mechanisms and Machine Science
, Vol.
53
,
C.
Gosselin
,
P.
Cardou
,
T.
Bruckmann
, and
A.
Pott
, eds.,
Springer
,
Cham
, pp.
319
330
.
14.
Vu
,
D.
,
Barnett
,
E.
, and
Gosselin
,
C.
,
2019
, “
Experimental Validation of a Three-DOF Cable-Suspended Parallel Robot for Spatial Translation With Constant Orientation
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
024502
. 10.1115/1.4042345
15.
Mottola
,
G.
,
Gosselin
,
C.
, and
Carricato
,
M.
,
2019
, “
Dynamically Feasible Motions of a Class of Purely-Translational Cable-Suspended Parallel Robots
,”
Mech. Mach. Theory
,
132
, pp.
193
206
. 10.1016/j.mechmachtheory.2018.10.017
16.
Landsberger
,
S. E.
, and
Sheridan
,
T. B.
,
1985
, “
A New Design for Parallel Link Manipulator
,”
Proceedings of Systems, Man and Cybernetics Conference
,
Tucson, AZ
,
Nov. 12–15
, pp.
812
814
.
17.
Behzadipour
,
S.
, and
Khajepour
,
A.
,
2005
, “
A New Cable-Based Parallel Robot With Three Degrees of Freedom
,”
Multibody Syst. Dyn.
,
13
(
4
), pp.
371
383
. 10.1007/s11044-005-3985-6
18.
Dekker
,
R.
,
Jepour
,
A. K.
, and
Behzadipour
,
S.
,
2006
, “
Design and Testing of an Ultra-High-Speed Cable Robot
,”
Int. J. Rob. Autom.
,
21
(
1
), pp.
25
34
.
19.
Behzadipour
,
S.
, and
Khajepour
,
A.
,
2004
, “
Design of Reduced DOF Parallel Cable-Based Robots
,”
Mech. Mach. Theory
,
39
(
10
), pp.
1051
1065
. 10.1016/j.mechmachtheory.2004.05.003
20.
Gao
,
B.
,
Song
,
H.
,
Zhao
,
J.
,
Guo
,
S.
,
Sun
,
L.
, and
Tang
,
Y.
,
2014
, “
Inverse Kinematics and Workspace Analysis of a Cable-Driven Parallel Robot With a Spring Spine
,”
Mech. Mach. Theory
,
76
, pp.
56
69
. 10.1016/j.mechmachtheory.2014.01.016
21.
Gao
,
B.
,
Zhu
,
Z.
,
Zhao
,
J.
, and
Jiang
,
L.
,
2017
, “
Inverse Kinematics and Workspace Analysis of a 3 DOF Flexible Parallel Humanoid Neck Robot
,”
J. Intell. Rob. Syst.
,
87
(
2
), pp.
211
229
. 10.1007/s10846-017-0502-0
22.
Zi
,
B.
,
Wang
,
N.
,
Qian
,
S.
, and
Bao
,
K.
,
2019
, “
Design, Stiffness Analysis and Experimental Study of a Cable-Driven Parallel 3D Printer
,”
Mech. Mach. Theory
,
132
, pp.
207
222
. 10.1016/j.mechmachtheory.2018.11.003
23.
Duan
,
Q.
,
Vashista
,
V.
, and
Agrawal
,
S. K.
,
2015
, “
Effect on Wrench-Feasible Workspace of Cable-Driven Parallel Robots by Adding Springs
,”
Mech. Mach. Theory
,
86
, pp.
201
210
. 10.1016/j.mechmachtheory.2014.12.009
24.
Zitzewitz
,
J. V.
,
Fehlberg
,
L.
,
Bruckmann
,
T.
, and
Vallery
,
H.
,
2013
,
Cable-Driven Parallel Robots. Mechanisms and Machine Science
, Vol.
12
,
T.
Bruckmann
, and
A.
Pott
, eds.,
Springer
,
Berlin
, pp.
167
184
.
25.
Zhang
,
Z.
,
Shao
,
Z.
,
Wang
,
L.
, and
Shi
,
A. J.
,
2018
, “Optimal Design of a High-Speed Pick-and-Place Cable-Driven Parallel Robot,”
Cable-Driven Parallel Robots. Mechanisms and Machine Science
,
53
,
C
Gosselin
,
P
Cardou
,
T
Bruckmann
, and
A
Pott
, ed.,
Springer
,
Cham
, pp.
340
352
.
26.
Alp
,
A. B.
, and
Agrawal
,
S. K.
,
2002
, “
Cable Suspended Robots: Design, Planning and Control
,”
Proceedings of the 2002 IEEE International Conference on Robotics and Automation
,
Washington, DC
,
May 11–15
, pp.
4275
4280
.
27.
Ebert-Uphoff
,
I.
, and
Voglewede
,
P. H.
,
2004
, “
On the Connection Between Cable-Driven Robots, Parallel Manipulators and Grasping
,”
Proceedings of the 2004 IEEE International Conference on Robotics & Automation
,
New Orleans, LA
,
Apr. 26–May 1
, pp.
4521
4526
.
28.
Bosscher
,
P.
,
Riechel
,
A. T.
, and
Ebert-Uphoff
,
I.
,
2006
, “
Wrench-Feasible Work-Space Generation for Cable-Driven Robots
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
890
902
. 10.1109/TRO.2006.878967
29.
Riechel
,
A. T.
, and
Ebert-Uphoff
,
I.
,
2004
, “
Force-Feasible Workspace Analysis for Underconstrained, Point-Mass Cable Robots
,”
Proceedings of 2004 IEEE International Conference on Robotics and Automation
,
New Orleans, LA
,
Apr. 26–May 1
, pp.
4956
4962
.
30.
Gouttefarde
,
M.
, and
Gosselin
,
C. M.
,
2006
, “
Analysis of the Wrench-Closure Workspace of Planar Parallel Cable-Driven Mechanisms
,”
IEEE Trans. Rob.
,
22
(
3
), pp.
434
445
. 10.1109/TRO.2006.870638
31.
Pham
,
C. B.
,
Yeo
,
S. H.
,
Yang
,
G.
,
Kurbanhusen
,
M. S.
, and
Chen
,
I.-M.
,
2006
, “
Force-Closure Workspace Analysis of Cable-Driven Parallel Mechanisms
,”
Mech. Mach. Theory
,
41
(
1
), pp.
53
69
. 10.1016/j.mechmachtheory.2005.04.003
32.
Verhoeven
,
R.
, and
Hiller
,
M.
,
2000
, “Estimating the Controllable Workspace of Tendon-Based Stewart Platforms,”
Advances in Robot Kinematics
,
J.
Lenarčič
and
M. M.
Stanišić
, eds.,
Springer
,
Dordrecht
, pp.
277
284
.
33.
Alikhani
,
A.
,
Behzadipour
,
S.
,
Vanini
,
S. A. S.
, and
Alasty
,
A.
,
2009
, “
Workspace Analysis of a Three DOF Cable-Driven Mechanism
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041005
. 10.1115/1.3204255
34.
Zlatanov
,
D.
,
Agrawal
,
S.
, and
Gosselin
,
C. M.
,
2005
, “
Convex Cones in Screw Spaces
,”
Mech. Mach. Theory
,
40
(
6
), pp.
710
727
. 10.1016/j.mechmachtheory.2004.11.004
35.
Bouchard
,
S.
,
Gosselin
,
C.
, and
Moore
,
B.
,
2009
, “
On the Ability of a Cable-Driven Robot to Generate a Prescribed set of Wrenches
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011010
.
36.
Zhang
,
Y.
,
Dai
,
X.
, and
Yang
,
Y.
,
2009
, “
Workspace Analysis of a Novel 6-DOF Cable-Driven Parallel Robot
,”
2009 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Guilin, China
,
Dec. 19–23
, pp.
2403
2408
.
37.
Gouttefarde
,
M.
,
Daney
,
D.
, and
Merlet
,
J. P.
,
2011
, “
Interval-Analysis-Based Determination of the Wrench-Feasible Workspace of Parallel Cable-Driven Robots
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
1
13
. 10.1109/TRO.2010.2090064
38.
Abbasnejad
,
G.
,
Eden
,
J.
, and
Lau
,
D.
,
2019
, “
Generalized Ray-Based Lattice Generation and Graph Representation of Wrench-Closure Workspace for Arbitrary Cable-Driven Robots
,”
IEEE Trans. Rob.
,
35
(
1
), pp.
147
161
. 10.1109/TRO.2018.2871395
39.
Yao
,
R.
,
Tang
,
X.
,
Wang
,
J.
, and
Huang
,
P.
,
2011
, “
Dimensional Optimization Design of the Four-Cable-Driven Parallel Manipulator in FAST
,”
IEEE-ASME Trans. Mechatron.
,
15
(
6
), pp.
932
941
.
40.
Pham
,
C. B.
,
Yeo
,
S. H.
,
Yang
,
G. L.
, and
Chen
,
I.-M.
,
2009
, “
Workspace Analysis of Fully Restrained Cable-Driven Manipulators
,”
Rob. Auton. Syst.
,
57
(
9
), pp.
901
912
. 10.1016/j.robot.2009.06.004
41.
Duan
,
Q. J.
,
Li
,
Q. H.
,
Li
,
F.
, and
Duan
,
X. C.
,
2016
, “
Analysis of the Work-Space of the Cable-Spring Mechanism
,”
J. Mech. Eng.
,
52
(
15
), pp.
15
20
. 10.3901/JME.2016.15.015
42.
Tang
,
X.
,
Tang
,
L.
,
Wang
,
J.
, and
Sun
,
D.
,
2013
, “
Workspace Quality Analysis and Application for a Completely Restrained 3-Dof Planar Cable-Driven Parallel Manipulator
,”
J. Mech. Sci. Technol.
,
27
(
8
), pp.
2391
2399
. 10.1007/s12206-013-0624-7
43.
Abdolshah
,
S.
,
Zanotto
,
D.
,
Rosati
,
G.
, and
Agrawal
,
S. K.
,
2017
, “
Optimizing Stiffness and Dexterity of Planar Adaptive Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031004
. 10.1115/1.4035681
44.
Wang
,
W.
,
2016
, “
Research on Redundantly Restrained Cable-Driven Parallel Mechanism for Simulating Force, Doctoral Dissertation
,”
Ph.D. thesis
,
Tsinghua University
,
Beijing, China
.
45.
Wang
,
J.
,
Wu
,
C.
, and
Liu
,
X.-J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
. 10.1016/j.mechmachtheory.2010.05.001
46.
Liu
,
X.-J.
,
Chen
,
X.
, and
Nahon
,
M.
,
2014
, “
Motion/Force Constrainability Analysis of Lower-Mobility Parallel Manipulators
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031006
. 10.1115/1.4026632
47.
Ball
,
R. S.
,
1990
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge, UK
.
48.
Clavel
,
R.
,
1988
, “
Delta: A Fast Robot With Parallel Geometry
,”
Proceedings of 18th International Symposium on Industrial Robots
,
New York
,
Apr. 26–28
, pp.
91
100
.
49.
Childs
,
P. R. N.
,
2018
,
Mechanical Design Engineering Handbook
, 2nd ed.,
Butterworth-Heinemann
,
Oxford, UK
.
50.
Meng
,
Q.
,
Xie
,
F.
, and
Liu
,
X. J.
,
2010
, “
Conceptual Design and Kinematic Analysis of a Novel Parallel Robot for High-Speed Pick-and-Place Operations
,”
Front. Mech. Eng
,
13
(
2
), pp.
211
224
. 10.1007/s11465-018-0471-4
51.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
. 10.1177/027836498500400201
52.
Zhang
,
Z.
,
Wang
,
L.
, and
Shao
,
Z.
,
2018
, “
Improving the Kinematic Performance of a Planar 3-RRR Parallel Manipulator Through Actuation Mode Conversion
,”
Mech. Mach. Theory
,
130
, pp.
86
108
. 10.1016/j.mechmachtheory.2018.08.011
53.
Wang
,
L.
,
Zhang
,
Z.
, and
Shao
,
Z.
,
2019
, “
Kinematic Performance Analysis and Promotion of a Spatial 3-RPaS Parallel Manipulator With Multiple Actuation Modes
,”
J. Mech. Sci. Technol.
,
33
(
2
), pp.
889
902
. 10.1007/s12206-019-0146-z
54.
Shao
,
Z.
,
Tang
,
X.
,
Wang
,
L.
, and
Sun
,
D.
,
2015
, “
Atlas Based Kinematic Optimum Design of the Stewart Parallel Manipulator
,”
Chin. J. Mech. Eng.
,
28
(
1
), pp.
20
28
. 10.3901/CJME.2014.0929.155
55.
Pierrot
,
F.
,
Nabat
,
V.
,
Company
,
O.
,
Krut
,
S.
, and
Poignet
,
P.
,
2009
, “
Optimal Design of a 4-DOF Parallel Manipulator: From Academia to Industry
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
213
224
. 10.1109/TRO.2008.2011412
56.
Borchert
,
G.
, and
Raatz
,
A.
,
2015
, “
An Analysis Process to Improve the Mobility of a Parallel Robot for Assembly Tasks
,”
Proceedings of the 14th IFToMM World Congress
,
Taipei, Taiwan
,
Oct. 25–30
, pp.
672
680
.
You do not currently have access to this content.