Abstract

Synthesis of rigid-body mechanisms has traditionally been motivated by the design for kinematic requirements such as rigid-body motions, paths, or functions. A blend of the latter two leads to timed curve synthesis, the goal of which is to produce a path coordinated to the input of a joint variable. This approach has utility for altering the transmission of forces and velocities from an input joint onto an output point path. The design of timed curve generators can be accomplished by setting up a square system of algebraic equations and obtaining all isolated solutions. For a four-bar linkage, obtaining these solutions is routine. The situation becomes much more complicated for the six-bar linkages, but the range of possible output motions is more diverse. The computation of nearly complete solution sets for these six-bar design equations has been facilitated by recent root finding techniques belonging to the field of numerical algebraic geometry. In particular, we implement a method that uses random monodromy loops. In this work, we report these solution sets to all relevant six-bars of the Stephenson topology. The computed solution sets to these generic problems represent a design library, which can be used in a parameter continuation step to design linkages for different subsequent requirements.

References

1.
Sandor
,
G.
, and
Erdman
,
A.
,
1984
,
Advanced Mechanical Design: Analysis and Synthesis
, Vol.
2
,
Prentice-Hall, Inc.
,
Englewood Cliffs, NJ
.
2.
Alt
,
H.
,
1923
, “
Über Die Erzeugung Gegebener Ebener Kurven Mit Hilfe Des Gelenkviereckes
,”
ZAMM-J. Appl. Math. Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik
,
3
(
1
), pp.
13
19
. 10.1002/zamm.19230030103
3.
Freudenstein
,
F.
,
1954
, “
An Analytical Approach to the Design of Four-Link Mechanisms
,”
Trans. ASME
,
76
(
3
), pp.
483
492
.
4.
Wampler
,
C.
,
Morgan
,
A.
, and
Sommese
,
A.
,
1992
, “
Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
153
159
. 10.1115/1.2916909
5.
Simionescu
,
P.
, and
Smith
,
M.
,
2001
, “
Four-and Six-Bar Function Cognates and Overconstrained Mechanisms
,”
Mech. Mach. Theory.
,
36
(
8
), pp.
913
924
. 10.1016/S0094-114X(01)00031-3
6.
Dijksman
,
E. A.
,
1976
,
Motion Geometry of Mechanisms
,
Cambridge University Press
,
London
.
7.
Jensen
,
P. W.
,
1992
, “
The Polode Synthesis Method
,”
Forschung im Ingenieurwesen
,
58
(
6
), pp.
152
163
. 10.1007/BF02574529
8.
Shiakolas
,
P.
,
Koladiya
,
D.
, and
Kebrle
,
J.
,
2005
, “
On the Optimum Synthesis of Six-Bar Linkages Using Differential Evolution and the Geometric Centroid of Precision Positions Technique
,”
Mech. Mach. Theory.
,
40
(
3
), pp.
319
335
. 10.1016/j.mechmachtheory.2004.07.005
9.
Cabrera
,
J.
,
Ortiz
,
A.
,
Nadal
,
F.
, and
Castillo
,
J.
,
2011
, “
An Evolutionary Algorithm for Path Synthesis of Mechanisms
,”
Mech. Mach. Theory.
,
46
(
2
), pp.
127
141
. 10.1016/j.mechmachtheory.2010.10.003
10.
Hauenstein
,
J. D.
,
Oeding
,
L.
,
Ottaviani
,
G.
, and
Sommese
,
A. J.
,
2019
, “
Homotopy Techniques for Tensor Decomposition and Perfect Identifiability
,”
J. für die reine angewandte Math. (Crelles J.)
,
2019
(
753
), pp.
1
22
. 10.1515/crelle-2016-0067
11.
Plecnik
,
M. M.
, and
Fearing
,
R. S.
,
2017
, “
Finding Only Finite Roots to Large Kinematic Synthesis Systems
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021005
. 10.1115/1.4035967
12.
Baskar
,
A.
, and
Bandyopadhyay
,
S.
,
2019
, “
An Algorithm to Compute the Finite Roots of Large Systems of Polynomial Equations Arising in Kinematic Synthesis
,”
Mech. Mach. Theory.
,
133
, pp.
493
513
. 10.1016/j.mechmachtheory.2018.12.004
13.
Duff
,
T.
,
Hill
,
C.
,
Jensen
,
A.
,
Lee
,
K.
,
Leykin
,
A.
, and
Sommars
,
J.
,
2018
, “
Solving Polynomial Systems Via Homotopy Continuation and Monodromy
,”
IMA J. Numeric. Anal.
,
39
(
3
), pp.
1421
1446
. 10.1093/imanum/dry017
14.
Baskar
,
A.
, and
Plecnik
,
M.
,
2019
, “
Synthesis of Stephenson III Timed Curve Generators Using a Probabilistic Continuation Method
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
,
American Society of Mechanical Engineers Digital Collection
.
15.
Plecnik
,
M. M.
, and
Fearing
,
R. S.
,
2020
, “
Designing Dynamic Machines With Large-Scale Root Finding
,”
IEEE Trans. Robot.
,
36
(
4
), pp.
1135
1152
. 10.1109/TRO.2020.2975425
16.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2013
,
Numerically Solving Polynomial Systems With Bertini
,
SIAM
,
Philadelphia
.
17.
McLarnan
,
C. W.
,
1963
, “
Synthesis of Six-Link Plane Mechanisms by Numerical Analysis
,”
ASME J. Eng. Ind.
,
85
(
1
), pp.
5
10
. 10.1115/1.3667588
18.
Roth
,
B.
, and
Freudenstein
,
F.
,
1963
, “
Synthesis of Path-Generating Mechanisms by Numerical Methods
,”
ASME J. Eng. Ind.
,
85
(
3
), pp.
298
304
. 10.1115/1.3669870
19.
Rao
,
A. V. M.
,
Erdman
,
A. G.
,
Sandor
,
G. N.
,
Raghunathan
,
V.
,
Nigbora
,
D. E.
,
Brown
,
L. E.
,
Mahardy
,
E. F.
, and
Enderle
,
E. D.
,
1971
, “
Synthesis of Multi-Loop, Dual-Purpose Planar Mechanisms Utilizing Burmester Theory
,”
Proceedings of the 2nd OSU Applied Mechanism Conference, Paper No. 7
,
Stillwater, OK
.
20.
Bagci
,
C.
, and
Burke
,
D.
,
1993
, “
Optimum Synthesis of Coupler Curve and Uniform Rotary Motion Driven Multiloop Mechanisms Generating Complex Output Motions
,”
ASME J. Mech. Des.
,
115
(
4
), pp.
967
977
. 10.1115/1.2919295
21.
Dhingra
,
A. K.
,
Cheng
,
J. C.
, and
Kohli
,
D.
,
1994
, “
Synthesis of Six-Link, Slider-Crank and Four-Link Mechanisms for Function, Path and Motion Generation Using Homotopy With M-homogenization
,”
ASME J. Mech. Des.
,
116
(
4
), pp.
1122
1131
. 10.1115/1.2919496
22.
Mitrev
,
R.
,
Tudjarov
,
B.
, and
Todorov
,
T.
,
2018
, “
Cloud-Based Expert System for Synthesis and Evolutionary Optimization of Planar Linkages
,”
Facta Univ.
,
16
(
2
), pp.
139
155
. 10.22190/fume180420016m
23.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
, “
Bertini: Software for Numerical Algebraic Geometry
,”
Permanent
10.7274/R0H41PB5.
24.
Plecnik
,
M. M.
, and
McCarthy
,
J. M.
,
2016
, “
Computational Design of Stephenson II Six-Bar Function Generators for 11 Accuracy Points
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011017
. 10.1115/1.4031124
25.
Plecnik
,
M. M.
, and
McCarthy
,
J. M.
,
2016
, “
Kinematic Synthesis of Stephenson III Six-Bar Function Generators
,”
Mech. Mach. Theory.
,
97
, pp.
112
126
. 10.1016/j.mechmachtheory.2015.10.004
26.
Hauenstein
,
J.
,
Sommese
,
A.
, and
Wampler
,
C.
,
2011
, “
Regeneration Homotopies for Solving Systems of Polynomials
,”
Math. Comput.
,
80
(
273
), pp.
345
377
. 10.1090/S0025-5718-2010-02399-3
27.
Wampler
,
C. W.
,
1996
, “
Isotropic Coordinates, Circularity, and Bézout Numbers: Planar Kinematics From a New Perspective
,”
Proceedings of ASME Design Engineering Technical Conference and Computers in Engineering Conference
,
Irvine, CA
,
Aug. 18–22
, pp.
139
155
.
28.
Morgan
,
A. P.
, and
Sommese
,
A. J.
,
1989
, “
Coefficient-Parameter Polynomial Continuation
,”
Appl. Math. Comput.
,
29
(
2
), pp.
123
160
. 10.1016/0096-3003(89)90099-4
29.
Tari
,
H.
, and
Su
,
H.-J.
,
2010
, “
Complete Solution to the Eight-Point Path Generation of Slider-Crank Four-Bar Linkages
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081003
. 10.1115/1.4001878
30.
Hauenstein
,
J. D.
, and
Sherman
,
S.
,
2020
, “
Using Monodromy to Statistically Estimate the Number of Solutions
,”
arXiv:2005.00327
.
31.
Baskar
,
A.
, and
Bandyopadhyay
,
S.
,
2019
, “
A Homotopy-Based Method for the Synthesis of Defect-Free Mechanisms Satisfying Secondary Design Considerations
,”
Mech. Mach. Theory.
,
133
, pp.
395
416
. 10.1016/j.mechmachtheory.2018.12.002
32.
Hartenberg
,
R. S.
, and
Denavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
McGraw-Hill Book Company
,
New York
.
33.
Sherman
,
S.
,
Hauenstein
,
J. D.
, and
Wampler
,
C. W.
,
2020
, “
Curve Cognate Constructions Made Easy
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 16–19
(
accepted
).
34.
Hauenstein
,
J. D.
, and
Rodriguez
,
J. I.
,
2020
, “
Multiprojective Witness Sets and a Trace Test
,”
Adv. Geom.
,
20
(
3
), pp.
297
318
. 10.1515/advgeom-2020-0006
35.
Balli
,
S. S.
, and
Chand
,
S.
,
2002
, “
Defects in Link Mechanisms and Solution Rectification
,”
Mech. Mach. Theory.
,
37
(
9
), pp.
851
876
. 10.1016/S0094-114X(02)00035-6
You do not currently have access to this content.