Abstract

The robotic shoulder rehabilitation exoskeletons that do not take into consideration all shoulder degrees-of-freedom (DOFs) lead to undesirable interaction forces and cause discomfort to the patient due to the joint axes misalignments between the exoskeleton and shoulder joints. In order to contribute to the solution of this human–robot compatibility issue, we present the kinematic modeling and analysis of a novel bio-inspired 5-DOFs hybrid human–robot mechanism (HRM). The human limbs are regarded as the inner passive restrained links in the proposed hybrid constrained anthropomorphic mechanism. The proposed hybrid mechanism combines serial and parallel manipulators with rigid and cable links enabling a match between human and exoskeleton joint axes. It is designed to cover the whole range of motion of the human shoulder with the workspace free of singularities. The numerical and simulation results from the computer-aided drawing model of the mechanism are presented to demonstrate the validity of the kinematic model, and the kinematic and singularity merits of the proposed mechanism. A three-dimensional printed prototype of the hybrid mechanism was fabricated to further validate the kinematic model and its overall advantages.

References

1.
Fasoli
,
S. E.
,
Krebs
,
H. I.
,
Stein
,
J.
,
Frontera
,
W. R.
, and
Hogan
,
N.
,
2003
, “
Effects of Robotic Therapy on Motor Impairment and Recovery in Chronic Stroke
,”
Arch. Phys. Med. Rehabil.
,
84
(
4
), pp.
477
482
. 10.1053/apmr.2003.50110
2.
Riener
,
R.
,
Nef
,
T.
, and
Colombo
,
G.
,
2005
, “
Robot-Aided Neurorehabilitation of the Upper Extremities
,”
Med. Biol. Eng. Comput.
,
43
(
1
), pp.
2
10
. 10.1007/BF02345116
3.
Colombo
,
R.
,
Sterpi
,
I.
,
Mazzone
,
A.
,
Delconte
,
C.
, and
Pisano
,
F.
,
2016
, “
Improving Proprioceptive Deficits After Stroke Through Robot-Assisted Training of the Upper Limb: A Pilot Case Report Study
,”
Neurocase
,
22
(
2
), pp.
191
200
. 10.1080/13554794.2015.1109667
4.
Norouzi-Gheidari
,
N.
,
Archambault
,
P. S.
, and
Fung
,
J.
,
2012
, “
Effects of Robot-Assisted Therapy on Stroke Rehabilitation in Upper Limbs: Systematic Review and Meta-Analysis of the Literature
,”
J. Rehabil. Res. Dev.
,
49
(
4
), p.
479
. 10.1682/JRRD.2010.10.0210
5.
Nef
,
T.
,
Guidali
,
M.
, and
Riener
,
R.
,
2009
, “
ARMin III—Arm Therapy Exoskeleton With an Ergonomic Shoulder Actuation
,”
Appl. Bion. Biomech.
,
6
(
2
), pp.
127
142
. 10.1155/2009/962956
6.
Yan
,
H.
,
Yang
,
C.
,
Zhang
,
Y.
, and
Wang
,
Y.
,
2014
, “
Design and Validation of a Compatible 3-Degrees of Freedom Shoulder Exoskeleton With an Adaptive Center of Rotation
,”
J. Mech. Des.
,
136
(
7
), p.
071006
. 10.1115/1.4027284
7.
Kiguchi
,
K.
,
Rahman
,
M. H.
,
Sasaki
,
M.
, and
Teramoto
,
K.
,
2008
, “
Development of a 3DOF Mobile Exoskeleton Robot for Human Upper-Limb Motion Assist
,”
Rob. Auton. Syst.
,
56
(
8
), pp.
678
691
. 10.1016/j.robot.2007.11.007
8.
Hunt
,
J.
,
Lee
,
H.
, and
Artemiadis
,
P.
,
2016
, “
A Novel Shoulder Exoskeleton Robot Using Parallel Actuation and a Passive Slip Interface
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011002
. 10.1115/1.4035087
9.
Christensen
,
S.
, and
Bai
,
S.
,
2018
, “
Kinematic Analysis and Design of a Novel Shoulder Exoskeleton Using a Double Parallelogram Linkage
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041008
. 10.1115/1.4040132
10.
Carignan
,
C.
,
Liszka
,
M.
, and
Roderick
,
S.
,
2005
, “
Design of an Arm Exoskeleton With Scapula Motion for Shoulder Rehabilitation
,”
12th International Conference on Advanced Robotics
,
Seattle, WA
,
July 18–20
.
11.
Sanchez
,
R. J.
,
Wolbrecht
,
E. T.
,
Smith
,
R.
,
Liu
,
J.
,
Rao
,
S.
,
Cramer
,
S. C.
,
Rahman
,
T.
,
Bobrow
,
J. E.
, and
Reinkensmeyer
,
D. J.
,
2005
, “
A Pneumatic Robot for Re-Training Arm Movement After Stroke Rationale and Mechanical Design
,”
IEEE 9th International Conference on Rehabilitation Robotics
,
Chicago, IL
,
June 28–July 1
.
12.
Jung
,
Y.
, and
Bae
,
J.
,
2015
, “
Kinematic Analysis of a 5-DOF Upper-Limb Exoskeleton With a Tilted and Vertically Translating Shoulder Joint
,”
IEEE/ASME Trans. Mechatron.
,
20
(
3
), pp.
1428
1439
. 10.1109/tmech.2014.2346767
13.
Ball
,
S. J.
,
Brown
,
I. E.
, and
Scott
,
S. H.
,
2007
, “
MEDARM: A Rehabilitation Robot With 5DOF at the Shoulder Complex
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Zurich
,
Sept. 4–7
.
14.
Chen
,
S. H.
,
Lien
,
W. M.
,
Wang
,
W. W.
,
Lee
,
G. D.
,
Hsu
,
L. C.
,
Lee
,
K. W.
,
Lin
,
S. Y.
,
Lin
,
C. H.
,
Fu
,
L. C.
,
Lai
,
J. S.
,
Luh
,
J. J.
, and
Chen
,
W. S.
,
2016
, “
Assistive Control System for Upper Limb Rehabilitation Robot
,”
IEEE Trans. Neural Syst. Rehabilitation Eng.
,
24
(
11
), pp.
1199
1209
.
15.
Kim
,
B.
, and
Deshpande
,
A. D.
,
2017
, “
An Upper-Body Rehabilitation Exoskeleton Harmony With an Anatomical Shoulder Mechanism: Design, Modeling, Control, and Performance Evaluation
,”
Int. J. Rob. Res.
,
36
(
4
), pp.
414
435
. 10.1177/0278364917706743
16.
Ikemoto
,
S.
,
Kimoto
,
Y.
, and
Hosoda
,
K.
,
2015
, “
Shoulder Complex Linkage Mechanism for Humanlike Musculoskeletal Robot Arms
,”
Bioinspir. Biomim.
,
10
(
6
), p.
066009
. 10.1088/1748-3190/10/6/066009
17.
Otten
,
A.
,
Voort
,
C.
,
Stienen
,
A.
,
Aarts
,
R.
,
Asseldonk
,
E.
, and
Kooij
,
H.
,
2015
, “
LIMPACT: A Hydraulically Powered Self-Aligning Upper Limb Exoskeleton
,”
IEEE/ASME Trans. Mechatron.
,
20
(
5
), pp.
2285
2298
. 10.1109/TMECH.2014.2375272
18.
Gopura
,
R. A. R. C.
,
Kiguchi
,
K.
, and
Li
,
Y.
,
2009
, “
SUEFUL-7: A 7DOF Upper-Limb Exoskeleton Robot With Muscle-Model-Oriented EMG-Based Control
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 10–15
.
19.
Park
,
H. S.
,
Ren
,
Y.
, and
Zhang
,
L.
,
2008
, “
IntelliArm: An Exoskeleton for Diagnosis and Treatment of Patients With Neurological Impairments
,”
2nd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Scottsdale, AZ
,
Oct. 19–22
.
20.
Martinez
,
F.
,
Pujana-Arrese
,
A.
,
Retolaza
,
I.
,
Sacristan
,
I.
,
Basurko
,
J.
, and
Landaluze
,
J.
,
2009
, “
IKO: A Five Actuated DoF Upper Limb Exoskeleton Oriented to Workplace Assistance
,”
Appl. Bion. Biomech.
,
6
(
2
), pp.
143
155
. 10.1155/2009/878142
21.
Ergin
,
M. A.
, and
Patoglu
,
V.
,
2012
, “
ASSISTON-SE: A Self-Aligning Shoulder-Elbow Exoskeleton
,”
IEEE International Conference on Robotics and Automation
,
St. Paul, MN
.
22.
Mao
,
Y.
,
G.G.
,
D.
,
J.P.
,
S.
, and
Agrawal
,
S. K.
,
2015
, “
Human Movement Training With a Cable Driven ARm EXoskeleton (CAREX)
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
1
), pp.
84
92
. 10.1109/tnsre.2014.2329018
23.
Niyetkaliyev
,
A. S.
,
Hussain
,
S.
,
Ghayesh
,
M. H.
, and
Alici
,
G.
,
2017
, “
Review on Design and Control Aspects of Robotic Shoulder Rehabilitation Orthoses
,”
IEEE Trans. Human Mach. Syst
,
47
(
6
), pp.
1134
1145
. 10.1109/thms.2017.2700634
24.
Alici
,
G.
, and
Shirinzadeh
,
B.
,
2004
, “
Topology Optimisation and Singularity Analysis of a 3-SPS Parallel Manipulator With a Passive Constraining Spherical Joint
,”
Mech. Mach. Theory
,
39
(
2
), pp.
215
235
. 10.1016/S0094-114X(03)00116-2
25.
Lu
,
Y.
,
Hu
,
B.
, and
Liu
,
P.-L.
,
2007
, “
Kinematics and Dynamics Analyses of a Parallel Manipulator with Three Active Legs and One Passive Leg by a Virtual Serial Mechanism
,”
Multibody System Dyn.
,
17
(
4
), pp.
229
241
. 10.1007/s11044-006-9032-4
26.
Sadjadian
,
H.
, and
Taghirad
,
H. D.
,
2005
, “
Kinematic and Singularity Analysis of the Hydraulic Shoulder: A 3-DOF Redundant Parallel Manipulator
,”
Adv. Robot.
,
20
(
7
), pp.
763
781
. 10.1163/156855306777681366
27.
Joshi
,
S.
, and
Tsai
,
L.-W.
,
2003
, “
A Comparison Study of Two 3-DOF Parallel Manipulators One WIth Three and the Other With Four Supporting Legs
,”
IEEE Trans. Robot Autom.
,
19
(
2
), pp.
200
209
. 10.1109/TRA.2003.808857
28.
Silva
,
R.
,
Nunes
,
M.
,
Bento
,
J.
, and
Costa
,
V.
,
2013
, “
Modelling an Inverted Slider Crank Mechanism Considering Kinematic Analysis and Multibody Aspects
,”
Proceedings of the XV International Symposium on Dynamic Problems of Mechanics
,
Buzios, RJ, Brazil
,
Feb. 17–22
.
29.
Nayak
,
A.
,
Caro
,
S.
, and
Wenger
,
P.
,
2019
, “
Kinematic Analysis of the 3-RPS-3-SPR Series-Parallel Manipulator
,”
Robotica
,
37
(
7
), pp.
1240
1266
. 10.1017/S0263574718000826
30.
Hu
,
B.
,
2014
, “
Formulation of Unified Jacobian for Serial-Parallel Manipulators
,”
Robot. Computer Int. Manuf.
,
30
(
5
), pp.
460
467
. https://doi.org/10.1016/j.rcim.2014.03.001
31.
Shao
,
Z.-F.
,
Tang
,
X.
, and
Yi
,
W.
,
2015
, “
Optimal Design of a 3-DOF Cable-Driven Upper Arm Exoskeleton
,”
Adv. Mech. Eng.
,
6
, pp.
1
8
. 10.1155/2014/157096
Article ID 157096
.
32.
Hamill
,
J.
, and
Knutzen
,
K. M.
,
2007
,
Biomechanical Basis of Human Movement
,
E.
Lupash
,
A. M.
Klingler
, and
E.
Malakoff-Klein
, eds., 3rd ed.,
Lippincott Williams & Wilkins
,
Philadelphia, PA
, pp.
139
186
.
33.
Merlet
,
J.-P.
,
2005
, “
Jacobian, Manipulability, Condition Number and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
. 10.1115/1.2121740
34.
Diao
,
X.
, and
Ma
,
O.
,
2008
, “
Force-Closure Analysis of 6-DOF Cable Manipulators With Seven or More Cables
,”
Robotica
,
27
(
2
), pp.
209
215
. 10.1017/S0263574708004591
35.
Pham
,
C. B.
,
Yeo
,
S. H.
,
Yang
,
G.
, and
Chen
,
I. M.
,
2009
, “
Workspace Analysis of Fully Restrained Cable-Driven Manipulators
,”
Robot. Auton. Syst.
,
57
(
9
), pp.
901
912
. 10.1016/j.robot.2009.06.004
36.
Yang
,
G.
,
Mustafa
,
S. K.
,
Yeo
,
S. H.
,
Lin
,
W.
, and
Lim
,
W. B.
,
2010
, “
Kinematic Design of an Anthropomimetic 7-DOF Cable-Driven Robotic Arm
,”
Front. Mech. Eng. China
,
6
, pp.
45
60
. 10.1007/s11465-011-0205-3
37.
Rasheed
,
T.
,
Long
,
P.
,
Marquez-Gamez
,
D.
, and
Caro
,
S.
,
2017
, “
Tension Distribution Algorithm for Planar Mobile Cable-Driven Parallel Robots
,”
The Third International Conference on Cable-Driven Parallel Robots (CableCon 2017)
,
Québec, Canada
,
Aug. 2–4
, pp.
268
279
.
38.
Bruckmann
,
T.
,
Mikelsons
,
L.
,
Brandt
,
T.
,
Hiller
,
M.
, and
Schramm
,
D.
,
2008
, “Wire Robots Part II: Dynamics, Control and Application,”
Parallel Manipulators, New Developments
,
J.-H.
Ryu
, ed.,
I-Tech Education and Publishing
,
Vienna, Austria
, p.
498
.
You do not currently have access to this content.