Abstract

In this paper, a model is shown to predict the simultaneous deformations occurring when compliant robotic fingers are grasping soft objects. This model aims at providing an accurate estimation of the penetration, internal forces, and deformed shapes of both these fingers and the objects. A particular emphasis is placed on the case when the finger is underactuated but the methodology discussed in this paper is general. Usually in the literature, underactuated fingers are modeled and designed considering their grasps of rigid object because of the complexity associated with deforming objects. This limitation severely hinders the usability of underactuated grippers and either restricts them to a narrow range of applications or requires extensive experimental testing. Furthermore, classical models of underactuated fingers in contact with objects are typically applicable with a maximum of one contact per phalanx only. The model proposed in this paper demonstrates a simple algorithm to compute a virtual subdivision of the phalanges which can be used to estimate the contact pressure arising when there are contacts at many locations simultaneously. This model also proposes a computationally efficient approximation of isotropic soft objects. Numerical simulations of the proposed model are compared here with dynamic simulations, finite element analyses, and experimental measurements which all shows its effectiveness and accuracy. Finally, the extension of the model to other types of underactuated fingers, standard grippers, and fully actuated robotic fingers as well as potential applications is discussed and illustrated.

References

1.
Birglen
,
L.
,
Laliberté
,
T.
, and
Gosselin
,
C. M.
,
2008
,
Underactuated Robotic Hands
,
Springer Edition
,
New York City, New York
.
2.
Gabiccini
,
M.
,
Farnioli
,
E.
, and
Bicchi
,
A.
,
2013
, “
Grasp Analysis Tools for Synergistic Underactuated Robotic Hands
,”
Int. J. Rob. Res.
,
32
(
13
), pp.
1553
1576
. 10.1177/0278364913504473
3.
Kragten
,
G. A.
, and
Herder
,
J. L.
,
2010
, “
The Ability of Underactuated Hands to Grasp and Hold Objects
,”
Mech. Mach. Theory
,
45
(
3
), pp.
408
425
. 10.1016/j.mechmachtheory.2009.10.002
4.
Lobontiu
,
N.
,
2002
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Boca Raton, FL
.
5.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
Hoboken, NJ
.
6.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des
.,
116
(1), pp.
280
290
.10.1115/1.2919359
7.
Grossard
,
M.
,
Martin
,
J.
, and
Huard
,
B.
,
2015
, “
Force-Sensing Actuator with a Compliant Flexure-Type Joint for a Robotic Manipulator
,”
Actuators
,
4
, pp.
281
300
.
8.
Joshi
,
R. S.
,
Mitra
,
A. C.
, and
Kandharkar
,
S. R.
,
2017
, “
Design and Analysis of Compliant Micro-Gripper Using Pseudo Rigid Body Model (PRBM)
,”
Mater. Today:. Proc.
,
4
(
2
), pp.
1701
1707
. 10.1016/j.matpr.2017.02.010
9.
Bicchi
,
A.
, and
Kumar
,
V.
,
2000
, “
Robotic graspingand contact: A review
,”
2000 IEEE International Conference on Robotics and Automation, ICRA
,
San Francisco, CA
,
Apr. 24–28
.
10.
Natarajan
,
E.
,
Solihin
,
M. I.
, and
Chong
,
J. H.
,
2017
, “
Grasp Stability Analysis of An Isotropic Direct Driven Three-Finger Soft Robot Hand
,”
Int. J. Adv. Sci. Eng. Inf. Technol.
,
7
(
5
), pp.
1627
1631
. 10.18517/ijaseit.7.5.2526
11.
Babin
,
V.
,
St-Onge
,
D.
, and
Gosselin
,
C.
,
2019
, “
Stable and Repeatable Grasping of Flat Objects on Hard Surfaces Using Passive and Epicyclic Mechanisms
,”
Rob. Comput. Integr. Manuf.
,
55
(
A
), pp.
1
10
. 10.1016/j.rcim.2018.06.002
12.
Coevoet
,
E.
,
Escande
,
A.
, and
Duriez
,
C.
,
2019
, “
Soft Robots Locomotion and Manipulation Control Using Fem Simulation and Quadratic Programming
,”
2nd IEEE International Conference on Soft Robotics (RoboSoft)
,
Seoul, South Korea
,
Apr. 14–18
, pp.
739
745
.
13.
Rucker
,
D. C.
, and
Webster III
,
R. J.
,
2011
, “
Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading
,”
IEEE Trans. Rob.
,
27
(
6
), pp.
1033
1044
. 10.1109/TRO.2011.2160469
14.
Renda
,
F.
,
Cianchetti
,
M.
,
Giorelli
,
M.
,
Arienti
,
A.
, and
Laschi
,
C.
,
2012
, “
A 3D Steady-State Model of a Tendon-Driven Continuum Soft Manipulator Inspired by the Octopus Arm
,”
Bioinspiration Biomimetics
,
7
(
2
), p.
025006
. 10.1088/1748-3182/7/2/025006
15.
Shimoga
,
K. B.
, and
Goldenberg
,
A. A.
,
1996
, “
Soft Robotic Fingertips: Part I: A Comparison of Construction Materials
,”
Int. J. Rob. Res.
,
15
(
4
), pp.
320
334
. 10.1177/027836499601500402
16.
Kim
,
B.-H.
,
Hirai
,
S.
, and
Inoue
,
T.
,
2003
, “
Analysis on the Fundamental Deformation Effect of Soft Fingertips for Soft-Fingered Object Manipulations
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003 (IROS 2003)
,
Las Vegas, NV
,
Oct. 27–31
, Vol.
4
, IEEE, pp.
3698
3704
.
17.
Ciocarlie
,
M.
,
Miller
,
A.
, and
Allen
,
P.
,
2005
, “
Grasp Analysis Using Deformable Fingers
,”
2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005 (IROS 2005)
,
Edmonton, Canada
,
Aug. 2–6
, IEEE, pp.
4122
4128
.
18.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), p.
467
. 10.1038/nature14543
19.
Zhou
,
X.
,
Majidi
,
C.
, and
O’Reilly
,
O. M.
,
2015
, “
Soft Hands: An Analysis of Some Gripping Mechanisms in Soft Robot Design
,”
Int. J. Solids Struct.
, 64
65
, pp.
155
165
. 10.1016/j.ijsolstr.2015.03.021
20.
Li
,
J.
,
Zu
,
L.
,
Zhong
,
G.
,
He
,
M.
,
Yin
,
H.
, and
Tan
,
Y.
,
2017
, “
Stiffness Characteristics of Soft Finger With Embedded SMA Fibers
,”
Compos. Struct.
,
160
, pp.
758
764
. 10.1016/j.compstruct.2016.10.045
21.
Dang
,
W.
,
Hosseini
,
E. S.
, and
Dahiya
,
R.
,
2018
, “
Soft Robotic Finger With Integrated Stretchable Strain Sensor
,”
2018 IEEE SENSORS
,
New Delhi, India
,
Oct. 28–31
, IEEE, pp.
1
4
.
22.
Mutlu
,
R.
,
Yildiz
,
S. K.
,
Alici
,
G.
, and
Spinks
,
G. M.
,
2016
, “
Mechanical Stiffness Augmentation of a 3D Printed Soft Prosthetic Finger
,”
2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)
,
Banff, Alberta, Canada
,
July 12–15
, IEEE, pp.
7
12
.
23.
Mazzolai
,
B.
,
Margheri
,
L.
,
Cianchetti
,
M.
,
Dario
,
P.
, and
Laschi
,
C.
,
2012
, “
Soft-Robotic Arm Inspired by the Octopus: II. From Artificial Requirements to Innovative Technological Solutions
,”
Bioinspiration Biomimetics
,
7
(
2
), p.
025005
. 10.1088/1748-3182/7/2/025005
24.
Wakamatsu
,
H.
,
Hirai
,
S.
, and
Iwata
,
K.
,
1996
, “
Static Analysis of Deformable Object Grasping Based on Bounded Force Closure
,”
Proceedings 1996 IEEE International Conference on Robotics and Automation, 1996
,
Minneapolis, MN
,
Apr. 22–28
, pp.
3324
3329
.
25.
Gopalakrishnan
,
K.
, and
Goldberg
,
K.
,
2005
, “
D-Space and Deform Closure Grasps of Deformable Parts
,”
Int. J. Rob. Res.
,
24
(
11
), pp.
899
910
. 10.1177/0278364905059055
26.
Jia
,
Y.-B.
,
Guo
,
F.
, and
Tian
,
J.
,
2011
, “
On Two-Finger Grasping of Deformable Planar Objects
,”
2011 IEEE International Conference on Robotics and Automation (ICRA)
,
Shanghai, China
,
May 9–13
, IEEE, pp.
5261
5266
.
27.
Arata
,
J.
,
Kogiso
,
S.
,
Sakaguchi
,
M.
,
Nakadate
,
R.
,
Oguri
,
S.
,
Uemura
,
M.
,
Byunghyun
,
C.
,
Akahoshi
,
T.
,
Ikeda
,
T.
, and
Hashizume
,
M.
,
2015
, “
Articulated Minimally Invasive Surgical Instrument Based on Compliant Mechanism
,”
Int. J. Comput. Assist. Radiol. Surgery
,
10
(
11
), pp.
1837
1843
. 10.1007/s11548-015-1159-4
28.
Hong
,
M. B.
, and
Jo
,
Y.-H.
,
2012
, “
Design and Evaluation of 2-DOF Compliant Forceps With Force-Sensing Capability for Minimally Invasive Robot Surgery
,”
IEEE Trans. Rob.
,
28
(
4
), pp.
932
941
. 10.1109/TRO.2012.2194889
29.
Frecker
,
M. I.
,
Powell
,
K. M.
, and
Haluck
,
R.
,
2005
, “
Design of a Multifunctional Compliant Instrument for Minimally Invasive Surgery
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
990
993
. 10.1115/1.2056560
30.
Meier
,
U.
,
López
,
O.
,
Monserrat
,
C.
,
Juan
,
M. C.
, and
Alcaniz
,
M.
,
2005
, “
Real-Time Deformable Models for Surgery Simulation: a Survey
,”
Comput. Methods Programs Biomed.
,
77
(
3
), pp.
183
197
. 10.1016/j.cmpb.2004.11.002
31.
Mesit
,
J.
,
2010
, “
Modeling and Simulation of Soft Bodies
.”
32.
Idkaidek
,
A.
, and
Jasiuk
,
I.
,
2015
, “
Toward High-Speed 3D Nonlinear Soft Tissue Deformation Simulations Using Abaqus Software
,”
J. Rob. Surgery
,
9
(
4
), pp.
299
310
. 10.1007/s11701-015-0531-2
33.
Goury
,
O.
, and
Duriez
,
C.
,
2018
, “
Fast, Generic, and Reliable Control and Simulation of Soft Robots Using Model Order Reduction
,”
IEEE Trans. Rob.
,
34
(
6
), pp.
1565
1576
. 10.1109/TRO.2018.2861900
34.
Gelder
,
A. V.
,
1998
, “
Approximate Simulation of Elastic Membranes by Triangulated Spring Meshes
,”
J. Graph. Tools
,
3
(
2
), pp.
21
41
. 10.1080/10867651.1998.10487490
35.
Bianchi
,
G.
,
Harders
,
M.
, and
Székely
,
G.
,
2003
, “
Mesh Topology Identification for Mass-Spring Models
,”
Medical Image Computing and Computer-Assisted Intervention-MICCAI 2003
,
Montréal, Canada
,
Nov. 24–30
, pp.
50
58
.
36.
Mouazé
,
N.
, and
Birglen
,
L.
,
2018
, “
Deformation Analysis of a Compliant Underactuated Finger Grasping a Soft Object
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
.
37.
Shintake
,
J.
,
Sonar
,
H.
,
Piskarev
,
E.
,
Paik
,
J.
, and
Floreano
,
D.
,
2017
, “
Soft Pneumatic Gelatin Actuator for Edible Robotics
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, Canada
,
Sept. 24–28
, IEEE, pp.
6221
6226
.
38.
Boonvisut
,
P.
,
Jackson
,
R.
, and
Çavuşoğlu
,
M. C.
,
2012
, “
Estimation of Soft Tissue Mechanical Parameters From Robotic Manipulation Data
,”
2012 IEEE International Conference on Robotics and Automation (ICRA)
,
Saint Paul, MN
,
May 14–18
, IEEE, pp.
4667
4674
.
39.
Cox
,
T. R.
, and
Erler
,
J. T.
,
2011
, “
Remodeling and Homeostasis of the Extracellular Matrix: Implications for Fibrotic Diseases and Cancer
,”
Dis. Models Mech.
,
4
(
2
), pp.
165
178
. 10.1242/dmm.004077
40.
Grotte
,
M.
,
Duprat
,
F.
,
Piétri
,
E.
, and
Loonis
,
D.
,
2002
, “
Young’s Modulus, Poisson’s Ratio, and Lame’s Coefficients of Golden Delicious Apple
,”
Int. J. Food Prop.
,
5
(
2
), pp.
333
349
. 10.1081/JFP-120005789
41.
Golec
,
K.
,
Palierne
,
J.-F.
,
Zara
,
F.
,
Nicolle
,
S.
, and
Damiand
,
G.
,
2019
, “
Hybrid 3D Mass-Spring System for Simulation of Isotropic Materials With Any Poisson’s Ratio
,”
Visual Comput.
,
36
(
4
), pp.
1
17
. 10.1007/s00371-019-01663-0
You do not currently have access to this content.