Abstract

Soft continuum arms (SCAs) have a large workspace, dexterity, and adaptability, but at the cost of complex design construction highlighted by concatenating several serial segments. In this paper, we propose a new design architecture for SCAs composed of a parallel combination of pneumatic actuators. The BR2 SCA featured in this work is asymmetric as it combines one soft bending (B) actuator and two soft rotating (R2) actuators as opposed to state of art symmetric architectures that adopt bending segments. Spatial deformation is obtained by combining the bending and rotating feature of the individual actuators. This paper also formulates an approximate forward analysis method based on Kirchhoff rod equations to predict the spatial deformation under external loads with an accuracy less than 9% of the SCAs length. In addition, the model also takes into account the “coupling effect” inherent to the asymmetric parallel combination, where actuating rotating actuator attenuates the bending performance and vice versa. Consequently, this work also refines the design of the SCA that minimizes the coupling effect. A detailed performance study of the refined BR2 manipulator on a swiveling base demonstrates larger workspace and higher dexterity when compared with state of art single section SCAs. The performance of the design is validated through different tasks like obstacle avoidance, pick and place task, and whole arm grasping. These performance attributes surpass any other single segment soft module and is a potential building block for constructing customized SCAs.

References

1.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
. 10.1038/nature14543
2.
Kim
,
S.
,
Laschi
,
C.
, and
Trimmer
,
B.
,
2013
, “
Soft Robotics: A Bioinspired Evolution in Robotics
,”
Trends. Biotechnol.
,
31
(
5
), pp.
287
294
. 10.1016/j.tibtech.2013.03.002
3.
Lipson
,
H.
,
2013
, “
Challenges and Opportunities for Design, Simulation, and Fabrication of Soft Robots
,”
Soft Rob.
,
1
(
1
), pp.
21
27
. 10.1089/soro.2013.0007
4.
Trivedi
,
D.
,
Rahn
,
C. D.
,
Kier
,
W. M.
, and
Walker
,
I. D.
,
2008
, “
Soft Robotics: Biological Inspiration, State of the Art, and Future Research
,”
Appl. Bionics Biomech.
,
5
(
3
), pp.
99
117
. 10.1155/2008/520417
5.
Sanan
,
S.
,
Ornstein
,
M. H.
, and
Atkeson
,
C. G.
,
2011
, “
Physical Human Interaction for an Inflatable Manipulator
,”
2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Boston, MA
, IEEE, pp.
7401
7404
.
6.
Manti
,
M.
,
Thuruthel
,
T. G.
,
Falotico
,
F. P.
,
Pratesi
,
A.
,
Falotico
,
E.
,
Cianchetti
,
M.
, and
Laschi
,
C.
,
2017
, “
Exploiting Morphology of a Soft Manipulator for Assistive Tasks
,”
Biomimetic and Biohybrid Systems, Living Machines
,
Stanford University
.
7.
Mazzolai
,
B.
,
Margheri
,
L.
,
Cianchetti
,
M.
,
Dario
,
P.
, and
Laschi
,
C.
,
2012
, “
Soft-Robotic Arm Inspired by the Octopus: II. From Artificial Requirements to Innovative Technological Solutions
,”
Bioinspir. Biomim.
,
7
(
2
), p.
25005
. 10.1088/1748-3182/7/2/025005
8.
McMahan
,
W.
,
Chitrakaran
,
V.
,
Csencsits
,
M.
,
Dawson
,
D.
,
Walker
,
I. D.
,
Jones
,
B. A.
,
Pritts
,
M.
,
Dienno
,
D.
,
Grissom
,
M.
, and
Rahn
,
C. D.
,
2006
, “
Field Trials and Testing of the OctArm Continuum Manipulator, Robotics and Automation, 2006
,”
Proceedings 2006 IEEE International Conference on ICRA
,
Orlando, FL
, pp.
2336
2341
.
9.
Neppalli
,
S.
,
Jones
,
B.
,
McMahan
,
W.
,
Chitrakaran
,
V.
,
Walker
,
I.
,
Pritts
,
M.
,
Csencsits
,
M.
,
Rahn
,
C.
, and
Grissom
,
M.
,
2007
, “
OctArm-A Soft Robotic Manipulator, Intelligent Robots and Systems, 2007
,”
IEEE/RSJ International Conference on IROS
,
San Diego, CA
, IEEE, p.
2569
.
10.
Grissom
,
M. D.
,
Chitrakaran
,
V.
,
Dienno
,
D.
,
Csencits
,
M.
,
Pritts
,
M.
,
Jones
,
B.
,
McMahan
,
W.
,
Dawson
,
D.
,
Rahn
,
C.
, and
Walker
,
I.
,
2006
, “
Design and Experimental Testing of the OctArm Soft Robot Manipulator
,”
Proc. SPIE 6230, Unmanned Systems Technology VIII
,
Orlando, FL
, p.
62301F
.
11.
Grzesiak
,
A.
,
Becker
,
R.
, and
Verl
,
A.
,
2011
, “
The Bionic Handling Assistant: a Success Story of Additive Manufacturing
,”
Assembly Auto.
,
31
(
4
), pp.
329
333
. 10.1108/01445151111172907
12.
Laschi
,
C.
,
Cianchetti
,
M.
,
Mazzolai
,
B.
,
Margheri
,
L.
,
Follador
,
M.
, and
Dario
,
P.
,
2012
, “
Soft Robot Arm Inspired by the Octopus
,”
Adv. Rob.
,
26
(
7
), pp.
709
727
. 10.1163/156855312X626343
13.
Cheng
,
N. G.
,
Lobovsky
,
M. B.
,
Keating
,
S. J.
,
Setapen
,
A. M.
,
Gero
,
K. I.
,
Hosoi
,
A. E.
, and
Iagnemma
,
K. D.
,
2012
, “
Design and Analysis of a Robust, Low-Cost, Highly Articulated Manipulator Enabled by Jamming of Granular Media, Robotics and Automation
,”
2012 IEEE International Conference on ICRA
,
Saint Paul, MN
, IEEE, pp.
4328
4333
.
14.
Martinez
,
R. V.
,
Branch
,
J. L.
,
Fish
,
C. R.
,
Jin
,
L.
,
Shepherd
,
R. F.
,
Nunes
,
R. M. D.
,
Suo
,
Z.
, and
Whitesides
,
G. M.
,
2013
, “
Robotic Tentacles With Three-Dimensional Mobility Based on Flexible Elastomers
,”
Adv. Mater.
,
25
(
2
), pp.
205
212
. 10.1002/adma.201203002
15.
Ranzani
,
T.
,
Gerboni
,
G.
,
Cianchetti
,
M.
, and
Menciassi
,
A.
,
2015
, “
A Bioinspired Soft Manipulator for Minimally Invasive Surgery
,”
Bioinspir. Biomim.
,
10
(
3
), p.
35008
. 10.1088/1748-3190/10/3/035008
16.
Marchese
,
A. D.
,
Tedrake
,
R.
, and
Rus
,
D.
,
2016
, “
Dynamics and Trajectory Optimization for a Soft Spatial Fluidic Elastomer Manipulator
,”
Int. J. Rob. Res.
,
35
(
8
), pp.
1000
1019
. 10.1177/0278364915587926
17.
Phillips
,
B. T.
,
Becker
,
K. P.
,
Kurumaya
,
S.
,
Galloway
,
K. C.
,
Whittredge
,
G.
,
Vogt
,
D. M.
,
Teeple
,
C. B.
,
Rosen
,
M. H.
,
Pieribone
,
V. A.
,
Gruber
,
D. F.
, and
Wood
,
R. J.
,
2018
, “
A Dexterous, Glove-Based Teleoperable Low-Power Soft Robotic Arm for Delicate Deep-Sea Biological Exploration
,”
Sci. Rep.
,
8
(
1
), p.
14779
. 10.1038/s41598-018-33138-y
18.
Trivedi
,
D.
,
Lesutis
,
D.
, and
Rahn
,
C. D.
,
2010
, “
Dexterity and Workspace Analysis of Two Soft Robotic Manipulators
,”
Volume 2: 34th Annual Mechanisms and Robotics Conference, Parts A and B
,
Montreal, Quebec, Canada
, ASME, pp.
1389
1398
.
19.
Trivedi
,
D.
,
Dienno
,
D.
, and
Rahn
,
C. D.
,
2008
, “
Optimal, Model-Based Design of Soft Robotic Manipulators
,”
ASME J. Mech. Des.
,
130
(
9
), p.
091402
. 10.1115/1.2943300
20.
McAllister
,
W.
,
Osipychev
,
D.
,
Davis
,
A.
, and
Chowdhary
,
G.
,
2019
, “
Agbots: Weeding a Field with a Team of Autonomous Robots
,”
Comput. Electron. Agric.
,
163
(
8
), p.
104827
. 10.1016/j.compag.2019.05.036
21.
Krishnan
,
G.
,
Bishop-Moser
,
J.
,
Kim
,
C.
, and
Kota
,
S.
,
2015
, “
Kinematics of a Generalized Class of Pneumatic Artificial Muscles
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041014
. 10.1115/1.4029705
22.
Connolly
,
F.
,
Polygerinos
,
P.
,
Walsh
,
C. J.
, and
Bertoldi
,
K.
,
2015
, “
Mechanical Programming of Soft Actuators by Varying Fiber Angle
,”
Soft Rob.
,
2
(
1
), pp.
26
32
. 10.1089/soro.2015.0001
23.
Uppalapati
,
N. K.
,
Singh
,
G.
, and
Krishnan
,
G.
,
2018
, “
Parameter Estimation and Modeling of a Pneumatic Continuum Manipulator with Asymmetric Building Blocks
,”
IEEE International Conference on Soft Robotics (RoboSoft)
,
Livorno, Italy
, IEEE, pp.
528
533
.
24.
Rucker
,
D. C.
,
Jones
,
B. A.
, and
Webster, III
,
R. J.
,
2010
, “
A Geometrically Exact Model for Externally Loaded Concentric-Tube Continuum Robots
,”
IEEE Trans. Rob.
,
26
(
5
), pp.
769
780
. 10.1109/TRO.2010.2062570
25.
Bryson
,
C. E.
, and
Rucker
,
D. C.
,
2014
, “
Toward Parallel Continuum Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Hong Kong, China
,
May 31–June 5
, pp.
778
785
.
26.
Yan
,
D.
,
Lu
,
Y.
, and
Levy
,
D.
,
2015
, “
Parameter Identification of Robot Manipulators: A Heuristic Particle Swarm Search Approach
,”
PLoS. One.
,
10
(
6
), p.
e0129157
. 10.1371/journal.pone.0129157
27.
Wang
,
Z.
, and
Hirai
,
S.
,
2017
, “
Soft Gripper Dynamics Using a Line-Segment Model With An Optimization-Based Parameter Identification Method
,”
IEEE Rob. Auto. Lett.
,
2
(
2
), pp.
624
631
. 10.1109/LRA.2017.2650149
28.
Garbin
,
N.
,
Wang
,
L.
,
Chandler
,
J. H.
,
Obstein
,
K. L.
,
Simaan
,
N.
, and
Valdastri
,
P.
,
2018
, “
A Disposable Continuum Endoscope Using Piston-Driven Parallel Bellow Actuator
,”
2018 International Symposium on Medical Robotics (ISMR)
,
Atlanta, GA
, IEEE, pp.
1
6
.
29.
Giorgio-Serchi
,
F.
,
Arienti
,
A.
,
Corucci
,
F.
,
Giorelli
,
M.
, and
Laschi
,
C.
,
2017
, “
Hybrid Parameter Identification of a Multi-modal Underwater Soft Robot
,”
Bioinspir. Biomi.
,
12
(
2
), p.
025007
. 10.1088/1748-3190/aa5ccc
30.
Singh
,
G.
, and
Krishnan
,
G.
,
2017
, “
A Constrained Maximization Formulation to Analyze Deformation of Fiber Reinforced Elastomeric Actuators
,”
Smart Mater. Struct.
,
26
(
6
), p.
065024
. 10.1088/1361-665X/aa6dc6
31.
Chou
,
C.-P.
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modeling of McKibben Pneumatic Artificial Muscles
,”
IEEE. Trans. Rob. Autom.
,
12
(
1
), pp.
90
102
. 10.1109/70.481753
32.
Uppalapati
,
N. K.
, and
Krishnan
,
G.
,
2018
, “
Towards Pneumatic Spiral Grippers: Modeling and Design Considerations
,”
Soft Rob.
SEP,
5
(
6
), pp.
695
709
. 10.1089/soro.2017.0144
33.
Webster III
,
R. J.
, and
Rucker
,
D. C.
,
2011
, “
Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading
,”
Rob., IEEE Trans. Rob.
,
27
(
6
), pp.
1033
1044
. 10.1109/TRO.2011.2160469
34.
Trivedi
,
D.
,
Lotfi
,
A.
, and
Rahn
,
C. D.
,
2008
, “
Geometrically Exact Models for Soft Robotic Manipulators
,”
IEEE Trans. Rob.
,
24
(
4
), pp.
773
780
. 10.1109/TRO.2008.924923
35.
Miao
,
H.
,
Xia
,
X.
,
Perelson
,
A. S.
, and
Wu
,
H.
,
2011
, “
On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics
,”
SIAM Rev.
,
53
(
1
), pp.
3
39
. 10.1137/090757009
36.
Kierzenka
,
J.
, and
Shampine
,
L.
,
2001
, “
A BVP Solver Based on Residual Control and the Maltab PSE
,”
ACM Trans. Math. Soft.
,
27
(
3
). https://doi.org/10.1145/502800.502801
37.
Badescu
,
M.
, and
Mavroidis
,
C.
,
2004
, “
New Performance Indices and Workspace Analysis of Reconfigurable Hyper-redundant Robotic Arms
,”
Int. J. Rob. Res.
,
23
(
6
), pp.
643
659
. 10.1177/0278364904044406
38.
Wu
,
L.
,
Crawford
,
R.
, and
Roberts
,
J.
,
2017
, “
Dexterity Analysis of Three 6-DOF Continuum Robots Combining Concentric Tube Mechanisms and Cable-Driven Mechanisms
,”
IEEE Rob. Auto. Lett.
,
2
(
2
), pp.
514
521
. 10.1109/LRA.2016.2645519
39.
Wehner
,
M.
,
Tolley
,
M. T.
,
Mengüç
,
Y.
,
Park
,
Y.-L.
,
Mozeika
,
A.
,
Ding
,
Y.
,
Onal
,
C.
,
Shepherd
,
R. F.
,
Whitesides
,
G. M.
, and
Wood
,
R. J.
,
2014
, “
Pneumatic Energy Sources for Autonomous and Wearable Soft Robotics
,”
Soft Rob.
,
1
(
4
), pp.
263
274
. 10.1089/soro.2014.0018
40.
Uppalapati
,
N. K.
, and
Krishnan
,
G.
,
2020
, “
VaLeNS: Design of a Novel Variable Length Nested Soft Arm
,”
IEEE Rob. Auto. Lett.
,
5
(
2
), pp.
1135
1142
. 10.1109/LRA.2020.2967303
41.
Satheeshbabu
,
S.
,
Uppalapati
,
N. K.
,
Chowdhary
,
G.
, and
Krishnan
,
G.
,
2019
, “
Open Loop Position Control of Soft Continuum Arm Using Deep Reinforcement Learning
,”
International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
, IEEE, pp.
5133
5139
.
42.
Satheeshbabu
,
S.
,
Uppalapati
,
N. K.
,
Fu
,
T.
, and
Krishnan
,
G.
,
2020
, “
Continuous Control of a Soft Continuum Arm Using Deep Reinforcement Learning
,”
Third IEEE International Conference on Soft Robotics (RoboSoft)
,
New Haven, CT
, IEEE, pp.
497
503
.
You do not currently have access to this content.