Abstract

Designing a mechanism for elbow self-axis alignment requires the elimination of undesirable joint motion and tissue elasticity. The novelty of this work lies in proposing a double-layered interface using a 3-PRR planar parallel mechanism as a solution to the axis alignment problem. 3-PRR planar parallel mechanisms are suitable candidates to solve this as they can span the desired workspace in a relatively compact size. In this paper, we present the modeling, design, prototyping, and validation of the double-layered elbow exoskeleton interface for axis self-alignment. The desired workspace for the self-axis alignment mechanism is specified based on the estimated maximum possible misalignment between the exoskeleton joint and the human anatomical elbow joint. Kinematic parameters of the 3-PRR planar mechanism are identified by formulating an optimization problem. The goal is to find the smallest mechanism that can span the specified workspace. The orientation angle of the mechanism’s plane addresses the frontal frustum vertex angle of the elbow’s joint, while the translational motion allows the translational offsets between the user’s elbow and the exoskeleton joint. The designed exoskeleton axis can passively rotate around the frontal plane ±15 deg and translate along the workspace 30 mm in the frontal plane. Experimental results (quantitative and qualitative) confirmed the capability of the proposed exoskeleton in addressing the complex elbow motion, user’s satisfaction, and ergonomics.

References

1.
Go
,
A. S.
,
Mozaffarian
,
D
,
Roger
,
V. L.
,
Benjamin
,
E.
,
Berry
,
J.
,
Blaha
,
M. J.
,
Dai
,
S.
,
Ford
,
E.
,
Fox
,
C
,
Franco
,
S.
,
Fullerton
,
H. J.
,
Gillespie
,
C.
,
Hailpern
,
S. M.
,
Heit
,
J. A.
,
Howard
,
V. J.
,
Huffman
,
M. D.
,
Judd
,
S. E.
,
Kissela
,
B. M.
,
Kittner
,
S. J.
,
Lackland
,
D. T.
,
Lichtman
,
J. H.
,
Lisabeth
,
L. D.
,
Mackey
,
R. H.
,
Magid
,
D. J.
,
Marcus
,
G. M.
,
Marelli
,
A.
,
Matchar
,
D. B.
,
McGuire
,
D. K.
,
Mohler III
,
E. R.
,
Moy
,
C. S.
,
Mussolino
,
M. E.
,
Neumar
,
R. W.
,
Nichol
,
G.
,
Pandey
,
D. K.
,
Paynter
,
N. P.
,
Reeves
,
M. J.
,
Sorlie
,
P. D.
,
Stein
,
J.
,
Towfighi
,
A.
,
Turan
,
T. N.
,
Virani
,
S. S.
,
Wong
,
N. D.
,
Woo
,
W.
, and
Turner
,
M. B.
,
2014
, “
Executive Summary: Heart Disease and Stroke Statistics
,”
Circulation
,
129
(
3
), pp.
28
292
. 10.1161/01.cir.0000441139.02102.80
2.
Barreca
,
S.
,
Wolf
,
S. L.
,
Fasoli
,
S.
, and
Bohannon
,
R.
,
2003
, “
Treatment Interventions for the Paretic Upper Limb of Stroke Survivors: A Critical Review
,”
Neuro-Rehabil. Neural Repair
,
17
(
4
), pp.
220
226
. 10.1177/0888439003259415
3.
Volpe
,
B. T.
,
Krebs
,
H. I.
, and
Hogan
,
N.
,
2001
, “
Is Robot-Aided Sensorimotor Training in Stroke Rehabilitation a Realistic Option?
,”
Curr. Opin. Neurol.
,
14
(
6
), pp.
745
752
. 10.1097/00019052-200112000-00011
4.
Masiero
,
S.
,
Celia
,
A.
,
Rosati
,
G.
, and
Armani
,
M.
,
2007
, “
Robotic-assisted Rehabilitation of the Upper Limb After Acute Stroke
,”
Arch. Phys. Med. Rehabil.
,
88
(
2
), pp.
142
149
. 10.1016/j.apmr.2006.10.032
5.
Chiri
,
A.
,
Vitiello
,
N.
,
Giovacchini
,
F.
,
Roccella
,
S.
,
Vecchi
,
F.
, and
Carrozza
,
M. C.
,
2012
, “
Mechatronic Design and Characterization of the Index Finger Module of a Hand Exoskeleton for Post-Stroke Rehabilitation
,”
IEEE/ASME Trans. Mechatron.
,
17
(
5
), pp.
884
894
. 10.1109/TMECH.2011.2144614
6.
Kwakkel
,
G.
,
Kollen
,
B.
, and
Krebs
,
H.
,
2007
, “
Effects of Robot-Assisted Therapy on Upper Limb Recovery After Stroke: A Systematic Review
,”
Neurorehabil. Neural Repair
,
22
(
2
), pp.
111
121
. 10.1177/1545968307305457
7.
Krebs
,
H. I.
,
Hogan
,
N.
,
Aisen
,
M. L.
, and
Volpe
,
B. T.
,
1998
, “
Robot-Aided Neuro Rehabilitation
,”
IEEE Trans. Rehabil. Eng.
,
6
(
1
), pp.
75
87
. 10.1109/86.662623
8.
Lo
,
A. C.
,
Guarino
,
P. D.
,
Richards
,
L. G.
,
Haselkorn
,
J. K.
,
Wittenberg
,
G. F.
,
Federman
,
D. G.
,
Ringer
,
R. J.
,
Wagner
,
T. H.
,
Krebs
,
H. I.
,
Volpe
,
B. T.
,
Bever
,
C. T.
,
Bravata
,
D. M.
,
Duncan
,
P. W.
,
Corn
,
B. H.
,
Maffucci
,
A. D.
,
Nadeau
,
S. E.
,
Conroy
,
S. S.
,
Powell
,
J. M.
,
Huang
,
G. D.
, and
Peduzzi
,
P.
,
2010
, “
Robot-Assisted Therapy for Long-Term Upper-Limb Impairment After Stroke
,”
N. Engl. J. Med.
,
362
(
19
), pp.
1772
1783
. 10.1056/NEJMoa0911341
9.
Fasoli
,
S. E.
,
Krebs
,
H. I.
,
Stein
,
J.
,
Frontera
,
W. R.
, and
Hogan
,
N.
,
2003
, “
Effects of Robotic Therapy on Motor Impairment and Recovery in Chronic Stroke
,”
Arch. Phys. Med. Rehabil.
,
84
(
4
), pp.
477
482
. 10.1053/apmr.2003.50110
10.
Lum
,
P. S.
,
Burgar
,
C. G.
,
Kenney
,
D. E.
, and
Van der Loos
,
H. F. M.
,
1999
, “
Quantification of Force Abnormalities During Passive and Active-Assisted Upper-Limb Reaching Movements in Post-Stroke Hemiparesis
,”
IEEE Trans. Biomed. Eng.
,
46
(
6
), pp.
652
662
. 10.1109/10.764942
11.
Micera
,
S.
,
Carrozza
,
M. C.
,
Guglielmelli
,
E.
,
Cappiello
,
G.
,
Zaccone
,
F.
,
Freschi
,
C.
,
Colombo
,
R.
,
Mazzone
,
A.
,
Del conte
,
C.
,
Pisano
,
F.
,
Minuto
,
G.
, and
Dario
,
P.
,
2006
, “
A Simple Robotic System for Neuro-Rehabilitation
,”
J. Auton. Rob.
,
19
(
3
), pp.
271
284
. 10.1007/s10514-005-4749-0
12.
Reinkensmeyer
,
D. J.
,
Takahashi
,
C. D.
,
Timoszyk
,
W. K.
,
Reinkensmeyer
,
A. N.
, and
Kahn
,
L. E.
,
2001
, “
Design of Robot Assistance for Arm Movement Therapy Following Stroke
,”
Adv. Rob.
,
14
(
7
), pp.
625
637
. 10.1163/156855301742058
13.
Mayhew
,
D.
,
Bachrach
,
B.
,
Rymer
,
W.
, and
Beer
,
R.
,
2005
, “
Development of the MACARM—A Novel Cable Robot for Upper Limb Neuro Rehabilitation
,”
Proc. IEEE Int. Conf. Rehabil. Robot.
,
Chicago, IL
,
June/July
, pp.
299
302
. 10.1109/ICORR.2005.1501106
14.
Jia-Fan
,
Z.
,
Can Jun
,
Y.
,
Ying
,
C.
,
Yu
,
Z.
, and
Yi-Ming
,
D.
,
2008
, “
Modeling and Control of a Curved Pneumatic Muscle Actuator for Wearable Elbow Exoskeleton
,”
Mechatronics
,
18
(
8
), pp.
448
457
. 10.1016/j.mechatronics.2008.02.006
15.
Perry
,
J. C.
,
Rosen
,
J.
, and
Burns
,
S.
,
2007
, “
Upper-Limb Powered Exoskeleton Design
,”
IEEE/ASME Trans. Mechatronics
,
12
(
4
), pp.
408
417
. 10.1109/TMECH.2007.901934
16.
Cempini
,
M.
,
De Rossi
,
S. M. M.
,
Lenzi
,
T.
,
Vitiello
,
N.
, and
Carrozza
,
M.
,
2013
, “
Self-Alignment Mechanisms for Assistive Wearable Robots: A Kinetostatic Compatibility Method
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
236
250
. 10.1109/TRO.2012.2226381
17.
Stienen
,
A. H. A.
,
Hekman
,
E. E. G.
,
Van Der Helm
,
F. C. T.
, and
van der Kooij
,
H.
,
2009
, “
Self-Aligning Exoskeleton Axes Through Decoupling of Joint Rotations and Translations
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
628
633
. 10.1109/TRO.2009.2019147
18.
Dollar
,
A. M.
, and
Herr
,
H.
,
2008
, “
Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art.
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
144
158
. 10.1109/TRO.2008.915453
19.
Frisoli
,
A.
,
Rocchi
,
F.
,
Marcheschi
,
S.
,
Dettori
,
A.
,
Salsedo
,
F.
, and
Bergamasco
,
M.
,
2005
, “
A New Force-Feedback Arm Exoskeleton for Haptic Interaction in Virtual Environments
,”
Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Tele-Operator Systems, 2005. WorldHaptics2005
,
Pisa, Italy
, pp.
195
201
.
20.
Stienen
,
A. H. A.
,
Hekman,
,
E. E
,
Van der Helm
,
F. C
,
Prange
,
G. B
,
Jannink
,
M.J
,
Aalsma
,
A.M
, and
Van der Kooij
,
H.
,
2007
, “
Dampace: Dynamic Force-Coordination Trainer for the Upper Extremities
,”
2007 IEEE 10th International Conference on Rehabilitation Robotics
,
Noordwijk
,
June 13–15
, pp.
820
826
.
21.
Stienen
,
A. H.
,
Hekman
,
E. E.
,
Ter Braak
,
H.
,
Aalsma
,
A. M.
,
van der Helm
,
F. C.
, and
van der Kooij
,
H.
,
2008
, “
Design of a Rotational Hydro-Elastic Actuator for an Active Upper-Extremity Rehabilitation Exoskeleton
,”
Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference on
,
Scottsdale, AZ
,
Oct. 19–21
, pp.
881
888
.
22.
Schiele
,
A.
, and
van der Helm
,
F. C. T.
,
2006
, “
Kinematic Design to Improve Ergonomics in Human Machine Interaction
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
14
(
4
), pp.
456
469
. 10.1109/TNSRE.2006.881565
23.
Gan
,
D. M.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L. D.
,
2015
, “
Forward Kinematics Solution Distribution and Analytic Singularity-Free Workspace of Linear-Actuated Symmetrical Spherical Parallel Manipulators
,”
ASME Trans.: J. Mech. Rob.
,
7
(
4
), p.
041007
.
24.
Nef
,
T.
,
Mihelj
,
M.
, and
Riener
,
R.
,
2007
, “
Armin: A Robot for Patient-Cooperative Arm Therapy
,”
Med. Biol. Eng. Comput.
,
45
(
9
), pp.
887
900
. 10.1007/s11517-007-0226-6
25.
Vitiello
,
N.
,
Lenzi
,
T.
,
Roccella
,
S.
,
De Rossi
,
S. M. M.
,
Cattin
,
E.
,
Giovacchini
,
F.
,
Vecchi
,
F.
, and
Carrozza
,
M.
,
2013
, “
Neuroexos: A Powered Elbow Exoskeleton for Physical Rehabilitation
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
220
235
. 10.1109/TRO.2012.2211492
26.
Jarrasse
,
N.
, and
Morel
,
G.
,
2012
, “
Connecting a Human Limb to an Exoskeleton
,”
IEEE Trans. Rob.
,
28
(
3
), pp.
697
709
. 10.1109/TRO.2011.2178151
27.
Junius
,
K.
,
Degelaen
,
M.
,
Lefeber
,
N.
,
Swinnen
,
E.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2017
, “
Bilateral, Misalignment-Compensating, Full-DOF Hip Exoskeleton: Design and Kinematic Validation
,”
Appl. Bionics Biomech.
,
2017
, pp.
1
14
.
Article ID 5813154
, 10.1155/2017/5813154
28.
Li
,
J.
,
Cao
,
Q.
,
Zhang
,
C.
,
Tao
,
C.
, and
Ji
,
R.
,
2019
, “
Position Solution of a Novel Four-DOFs Self-Aligning Exoskeleton Mechanism for Upper Limb Rehabilitation
,”
Mech. Mach. Theory
,
141
, pp.
14
39
. 10.1016/j.mechmachtheory.2019.06.020
29.
Wu
,
K. Y.
,
Su
,
Y. Y.
,
Yu
,
Y. L.
,
Lin
,
C. H.
, and
Lan
,
C. C.
,
2019
, “
A 5-Degrees-of-Freedom Lightweight Elbow-Wrist Exoskeleton for Forearm Fine-Motion Rehabilitation
,”
IEEE/ASME Trans. Mechatron.
,
24
(
6
), pp.
2684
2695
.
30.
Wang
,
J.
,
Li
,
X.
,
Huang
,
T. H.
,
Yu
,
S.
,
Li
,
Y.
,
Chen
,
T.
, and
Su
,
H.
,
2018
, “
Comfort-Centered Design of a Lightweight and Backdrivable Knee Exoskeleton
,”
IEEE Rob. Autom. Lett.
,
3
(
4
), pp.
4265
4272
. 10.1109/LRA.2018.2864352
31.
Bottlang
,
M.
,
Madey
,
S. M.
,
Steyers
,
C. M.
,
Marsh
,
J. L.
, and
Brown
,
T. D.
,
2000
, “
Assessment of Elbow Joint Kinematics in Passive Motion by Electromagnetic Motion Tracking
,”
J. Orthop. Res.
,
18
(
2
), pp.
195
202
. 10.1002/jor.1100180206
32.
Ericson
,
A.
,
Arndt
,
A.
,
Stark
,
A.
,
Wretenberg
,
P.
, and
Lundberg
,
A.
,
2003
, “
Variation in the Position and Orientation of the Elbow Flexion Axis
,”
J. Bone Joint Surg. Br.
,
85
(
4
), pp.
538
544
. 10.1302/0301-620X.85B4.13925
33.
Bottlang
,
M.
,
Marsh
,
J. L.
, and
Brown
,
T. D.
,
1998
, “
Factors Influencing Accuracy of Screw Displacement Axis Detection With a DC-Based Electromagnetic Tracking System
,”
ASME J. Biomech. Eng.
,
120
(
3
), pp.
431
435
. 10.1115/1.2798011
34.
Duck
,
T. R.
,
Dunning
,
C. E.
,
King
,
G. J.
, and
Johnson
,
J. A.
,
2003
, “
Variability and Repeatability of the Flexion Axis at the Ulnohumeral Joint
,”
J. Orthop. Res.
,
21
(
3
), pp.
399
404
. 10.1016/S0736-0266(02)00198-5
35.
Kapandji
,
I. A.
,
2002
,
Fisiologia Articolare—Arto Superiore
,
Maloine
,
Paris, France
.
36.
Gosselin
,
C. M.
,
Lemieux
,
S.
, and
Merlet
,
J.
,
1996
, “
A New Architecture of Planar Three-Degree-of-Freedom Parallel Manipulator
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
,
1996
, Vol.
4
, pp.
3738
3743
.
37.
Lou
,
Y.
,
Liu
,
G.
,
Chen
,
N.
, and
Li
,
Z.
,
2005
, “
Optimal Design of Parallel Manipulators for Maximum Effective Regular Workspace
,”
2005 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Edmonton, Alta
,
Aug. 2–6
.
38.
Ghosh
,
S.
, and
Gan
,
D.
,
2016
, “
Design of Passive 3-PRR Planar Parallel Manipulators for Self-Alignment of Exoskeleton Axes
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Volume 5B: 40th Mechanisms and Robotics Conference, V05BT07A042.
39.
Gosselin
,
C. M.
, and
Guillot
,
M.
,
1991
, “
The Synthesis of Manipulators With Prescribed Workspace
,”
ASME J. Mech. Des.
,
113
(
4
), pp.
451
455
. 10.1115/1.2912804
40.
Merlet
,
J. P.
,
1997
, “
Designing a Parallel Manipulator for a Specific Workspace
,”
Int. J. Rob. Res.
,
16
(
4
), pp.
545
556
. 10.1177/027836499701600407
41.
Murray
,
A. P.
,
Pierrot
,
F.
,
Dauchez
,
P.
, and
McCarthy
,
J. M.
,
1997
, “
A Planar Quaternion Approach to the Kinematic Synthesis of a Parallel Manipulator
,”
Robotica
,
15
(
4
), pp.
361
365
. 10.1017/S0263574797000441
42.
Boudreau
,
R.
, and
Gosselin
,
C. M.
,
1999
, “
The Synthesis of Planar Parallel Manipulators With a Genetic Algorithm
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
533
537
. 10.1115/1.2829494
43.
Caro
,
S.
,
Chablat
,
D.
,
Ur-Rehman
,
R.
, and
Wenger
,
P.
,
2011
,
Global Product Development
,
Springer
,
Berlin, Heidelberg
, pp.
373
383
.
44.
Lund
,
A. M.
,
2001
, “
Measuring Usability With the Use Questionnaire
,”
Usability Interface
,
8
(
2
), pp.
3
6
.
45.
Demers
,
L.
,
Weiss-Lambrou
,
R.
, and
Ska
,
B.
,
2002
, “
The Quebec User Evaluation of Satisfaction With Assistive Technology (Quest 2.0): An Overview and Recent Progress
,”
Technol. Disability
,
14
(
3
), pp.
101
105
. 10.3233/TAD-2002-14304
You do not currently have access to this content.