Abstract

Origami has shown the potential to approximate three-dimensional curved surfaces by folding through designed crease patterns on flat materials. The Miura-ori tessellation is a widely used pattern in engineering and tiles the plane when partially folded. Based on constrained optimization, this article presents the construction of generalized Miura-ori patterns that can approximate three-dimensional parametric surfaces of varying curvatures while preserving the inherent properties of the standard Miura-ori, including developability, flat foldability, and rigid foldability. An initial configuration is constructed by tiling the target surface with triangulated Miura-like unit cells and used as the initial guess for the optimization. For approximation of a single target surface, a portion of the vertexes on the one side is attached to the target surface; for fitting of two target surfaces, a portion of vertexes on the other side is also attached to the second target surface. The parametric coordinates are adopted as the unknown variables for the vertexes on the target surfaces, while the Cartesian coordinates are the unknowns for the other vertexes. The constructed generalized Miura-ori tessellations can be rigidly folded from the flat state to the target state with a single degree-of-freedom.

References

1.
Miura
,
K.
,
1969
, “
Proposition of Pseudo-Cylindrical Concave Polyhedral Shells
,”
Institute of Space and Astronautical Science Report, University of Tokyo, Report No. 442
,
Tokyo, Japan
,
November
.
2.
Miura
,
K.
,
1985
, “
Method of Packaging and Deployment of Large Membranes in Space
,”
Institute of Space and Astronautical Science, University of Tokyo, Report No. 618
,
Tokyo, Japan
,
December
.
3.
Miura
,
K.
,
1972
, “
Zeta-Core Sandwich—Its Concept and Realization
,”
Institute of Space and Aeronautical Science, University of Tokyo, Report No. 480
,
Tokyo, Japan
,
May
.
4.
Klett
,
Y.
, and
Drechsler
,
K.
,
2011
, “
Designing Technical Tessellations
,”
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
,
Singapore
,
July 13–17
.
5.
Heimbs
,
S.
,
2013
, “Foldcore Sandwich Structures and Their Impact Behaviour: An Overview,”
Dynamic Failure of Composite and Sandwich Structures
,
Springer
,
New York
, pp.
491
544
.
6.
Ma
,
J.
,
Song
,
J.
, and
Chen
,
Y.
,
2018
, “
An Origami-Inspired Structure With Graded Stiffness
,”
Int. J. Mech. Sci.
,
136
, pp.
134
142
. 10.1016/j.ijmecsci.2017.12.026
7.
Wei
,
Z. Y.
,
Guo
,
Z. V.
,
Dudte
,
L.
,
Liang
,
H. Y.
, and
Mahadevan
,
L.
,
2013
, “
Geometric Mechanics of Periodic Pleated Origami
,”
Phys. Rev. Lett.
,
110
(
21
), p.
215501
. 10.1103/PhysRevLett.110.215501
8.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci. USA
,
110
(
9
), pp.
3276
3281
. 10.1073/pnas.1217998110
9.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
. 10.1126/science.1252876
10.
Pratapa
,
P. P.
,
Suryanarayana
,
P.
, and
Paulino
,
G. H.
,
2018
, “
Bloch Wave Framework for Structures With Nonlocal Interactions: Application to the Design of Origami Acoustic Metamaterials
,”
J. Mech. Phys. Solids.
,
118
, pp.
115
132
. 10.1016/j.jmps.2018.05.012
11.
Tachi
,
T.
,
2009
, “
Generalization of Rigid Foldable Quadrilateral Mesh Origami
,”
Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia. Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures
,
Universidad Politecnica de Valencia, Spain
,
Sept. 28–Oct. 2
.
12.
Dieleman
,
P.
,
Vasmel
,
N.
,
Waitukaitis
,
S.
, and
van Hecke
,
M.
,
2019
, “
Jigsaw Puzzle Design of Pluripotent Origami
,”
Nat. Phys.
,
16
(
1
), pp.
1
6
.
13.
Tachi
,
T.
,
2010
, “Freeform Rigid-Foldable Structure Using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh,”
Advances in Architectural Geometry
,
C.
Ceccato
,
L.
Hasselgren
,
M.
Pauly
,
H.
Pottmann
, and
J.
Wallner
, eds.,
Springer
,
Vienna, Austria
, pp.
87
102
.
14.
Lang
,
R. J.
,
2017
,
Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami
,
AK Peters/CRC Press
,
Boca Raton, FL
.
15.
Tachi
,
T.
,
2010
, “
Freeform Variations of Origami
,”
J. Geom. Graph
,
14
(
2
), pp.
203
215
.
16.
Gattas
,
J. M.
,
Wu
,
W.
, and
You
,
Z.
,
2013
, “
Miura-Base Rigid Origami: Parameterizations of First-Level Derivative and Piecewise Geometries
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111011
. 10.1115/1.4025380
17.
Lang
,
R. J.
, and
Howell
,
L.
,
2018
, “
Rigidly Foldable Quadrilateral Meshes From Angle Arrays
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021004
. 10.1115/1.4038972
18.
Zhou
,
X.
,
Wang
,
H.
, and
You
,
Z.
,
2015
, “
Design of Three-Dimensional Origami Structures Based on a Vertex Approach
,”
Proc. R. Soc. A
,
471
(
2181
), p.
20150407
. 10.1098/rspa.2015.0407
19.
Wang
,
F.
,
Gong
,
H.
,
Chen
,
X.
, and
Chen
,
C.
,
2016
, “
Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-Based Cylindrical Structures
,”
Sci. Rep.
,
6
, p.
33312
. 10.1038/srep33312
20.
Song
,
K.
,
Zhou
,
X.
,
Zang
,
S.
,
Wang
,
H.
, and
You
,
Z.
,
2017
, “
Design of Rigid-Foldable Doubly Curved Origami Tessellations Based on Trapezoidal Crease Patterns
,”
Proc. R. Soc. A
,
473
(
2200
), p.
20170016
. 10.1098/rspa.2017.0016
21.
Hu
,
Y. C.
,
Liang
,
H. Y.
, and
Duan
,
H. L.
,
2019
, “
Design of Cylindrical and Axisymmetric Origami Structures Based on Generalized Miura-ori Cell
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051004
. 10.1115/1.4043800
22.
Dudte
,
L. H.
,
Vouga
,
E.
,
Tachi
,
T.
, and
Mahadevan
,
L.
,
2016
, “
Programming Curvature Using Origami Tessellations
,”
Nat. Mater.
,
15
(
5
), p.
583
. 10.1038/nmat4540
23.
Waitukaitis
,
S.
,
Menaut
,
R.
,
Chen
,
B. G. -g.
, and
van Hecke
,
M.
,
2015
, “
Origami Multistability: From Single Vertices to Metasheets
,”
Phys. Rev. Lett.
,
114
(
5
), p.
055503
. 10.1103/PhysRevLett.114.055503
24.
Bhooshan
,
S.
,
2016
, “
Interactive Design of Curved-Crease-Folding
,” Master’s thesis,
University of Bath
,
Bath, UK
.
25.
Moran
,
J.
,
2003
,
An Introduction to Theoretical and Computational Aerodynamics
,
Courier Corporation, Inc.
,
Mineola, NY
.
You do not currently have access to this content.