Abstract

Rope-driven mechanisms with the characteristics of high speed, low inertia, and high precision are widely utilized in numerous fields. Stiffness is an important indicator to illustrate the precision and compliance of the mechanism. However, realizing active stiffness control is difficult for the mechanisms due to the coupling of rope tension and controller stiffness. To solve the problem, a verification prototype, 2-DOF rope-driven parallel mechanism (RDPM), is designed and manufactured, and its mechanical model is established. And then the general stiffness model of the RDPM is derived. Meanwhile, the rope-hole friction is calculated based on the Stribeck model. An active stiffness control scheme considering the pose retention, vibration suppression, and friction compensation is proposed. According to the stiffness model and active stiffness control law, the linear motion stiffness of the RDPM is analyzed in detail. The conclusion shows the motion stiffness is linear with the controller stiffness and initial rope tension. Finally, the theoretical stiffness, simulation stiffness and experimental stiffness are calculated and compared by the co-simulation technique and physical prototype experiment. The error between experimental data and simulation data is within 10%, which verifies the stiffness model and active stiffness control scheme.

References

1.
Yao
,
R.
,
Tang
,
X.
,
Wang
,
J.
, and
Huang
,
P.
,
2010
, “
Dimensional Optimization Design of the Four-Cable-Driven Parallel Manipulator in Fast
,”
IEEE/ASME Trans. Mechatron.
,
15
(
6
), pp.
932
941
.
2.
Orekhov
,
A. L.
,
Bryson
,
C. E.
,
Till
,
J.
,
Chung
,
S.
, and
Rucker
,
D. C.
,
2015
, “
A Surgical Parallel Continuum Manipulator With a Cable-Driven Grasper
,”
37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
,
Milan, Italy
, Engineering in Medicine & Biology Society, pp.
5264
5267
http://dx.doi.org/10.1109/EMBC.2015.7319579.
3.
Tang
,
X.
,
2014
, “
An Overview of the Development for Cable-Driven Parallel Manipulator
,”
Adv. Mech. Eng.
,
2014
(
1
), pp.
1
9
.
4.
Passarini
,
C.
,
Zanotto
,
D.
, and
Boschetti
,
G.
,
2019
, “
Dynamic Trajectory Planning for Failure Recovery in Cable-Suspended Camera Systems
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
021001
. 10.1115/1.4041942
5.
Khakpour
,
H.
,
Birglen
,
L.
, and
Tahan
,
S-A.
,
2015
, “
Analysis and Optimization of a New Differentially Driven Cable Parallel Robot
,”
J. Mech. Rob. Trans. Asme
,
7
(
3
), p.
034503
. 10.1115/1.4028931
6.
Cui
,
Z.
,
Tang
,
X.
,
Hou
,
S.
, and
Sun
,
H.
,
2018
, “
Research on Controllable Stiffness of Redundant Cable-driven Parallel Robots
,”
IEEE/ASME Trans. Mechat.
,
23
(
5
), pp.
2390
2401
. 10.1109/TMECH.2018.2864307
7.
Khosravi
,
M. A.
, and
Taghirad
,
H. D.
,
2011
, “
Dynamic Analysis and Control of Cable Driven Robots With Elastic Cables
,”
Trans.- Canadian Soc. Mech. Eng.
,
35
(
4
), pp.
543
557
. 10.1139/tcsme-2011-0033
8.
Abdolshah
,
S.
,
Zanotto
,
D.
,
Rosati
,
G.
, and
Agrawal
,
S. K.
,
2017
, “
Optimizing Stiffness and Dexterity of Planar Adaptive Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031004
. 10.1115/1.4035681
9.
Liu
,
F.
,
Li
,
B.
,
Huang
,
H.
, and
Ning
,
Y.
,
2019
, “
Design and Analysis of a Lightweight Flexible Cable-Driven Manipulator
,”
IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER)
,
Suzhou, China
, pp.
708
712
. http://dx.doi.org/10.1109/CYBER46603.2019.9066715
10.
Ferravante
,
V.
,
Riva
,
E.
,
Taghavi
,
M.
,
Braghin
,
F.
, and
Bock
,
T.
,
2019
, “
Dynamic Analysis of High Precision Construction Cable-Ddriven Parallel Robots
,”
Mech. Mach. Theory.
,
135
, pp.
54
64
. 10.1016/j.mechmachtheory.2019.01.023
11.
Moses
,
M. S.
,
Murphy
,
R. J.
,
Kutzer
,
M. D. M.
, and
Armand
,
M.
,
2015
, “
Modeling Cable and Guide Channel Interaction in a High-Strength Cable-Driven Continuum Manipulator
,”
IEEE/ASME Trans. Mech.
,
20
(
6
), pp.
2876
2889
. 10.1109/TMECH.2015.2396894
12.
Wang
,
H.
,
Wang
,
C.
,
Chen
,
W.
,
Liang
,
X.
, and
Liu
,
Y.
,
2017
, “
Three-Dimensional Dynamics for Cable-Driven Soft Manipulator
,”
IEEE/ASME Trans. Mechat.
,
22
(
1
), pp.
18
28
. 10.1109/TMECH.2016.2606547
13.
Jungwook
,
S.
, and
Kiyoung
,
K.
,
2018
, “
Harmonious Cable Actuation Mechanism for Soft Robot Joints Using a Pair of Noncircular Pulleys
,”
J. Mech. Rob.
,
10
(
6
), p.
061002
. 10.1115/1.4041055
14.
Bolboli
,
J.
,
Khosravi
,
M. A.
, and
Abdollahi
,
F.
,
2019
, “
Stiffness Feasible Workspace of Cable-driven Parallel Robots With Application to Optimal Design of a Planar Cable Robot
,”
Rob. Auto. Syst.
,
114
, pp.
19
28
. 10.1016/j.robot.2019.01.012
15.
Yeo
,
S. H.
,
Yang
,
G.
, and
Lim
,
W. B.
,
2013
, “
Design and Analysis of Cable-Driven Manipulators With Variable Stiffness
,”
Mech. Machine Theory
,
69
, pp.
230
244
. 10.1016/j.mechmachtheory.2013.06.005
16.
Aliakbar
,
A.
,
Reza
,
H.
, and
Venkat
,
K.
,
2018
, “
Stiffness Modulation in An Elastic Articulated-cable Leg-Orthosis Emulator: Theory and Experiment
,”
IEEE Trans. Rob.
,
PP
(
5
), pp.
1
14
.
17.
Quentin
,
B.
,
Salih
,
A.
,
Marc
,
V.
,
Philippe
,
P.
, and
Pierre
,
R.
,
2017
, “
From Modeling to Control of a Variable Stiffness Device Based on a Cable-Driven Tensegrity Mechanism
,”
Mech. Machine Theory
,
107
, pp.
1
12
. 10.1016/j.mechmachtheory.2016.09.015
18.
Wang
,
Y.
,
Yang
,
G.
,
Yang
,
K.
, and
Zheng
,
T.
,
2017
, “
The Kinematic Analysis and Stiffness Optimization for An 8-dof Cable-driven Manipulator
,”
2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM)
,
Ningbo, China
, pp. 682–687http://dx.doi.org/10.1109/ICCIS.2017.8274860.
19.
Yang
,
Y.
,
Chen
,
W.
,
Wu
,
X.
, and
Chen
,
Q.
,
2010
, “
Stiffness Analysis of 3-DOF Spherical Joint Based on Cable-Driven Humanoid Arm
,”
2010 5th IEEE Conference on Industrial Electronics and Applications
,
Taichung, China
, pp. 99–103http://dx.doi.org/10.1109/ICIEA.2010.5515021.
20.
Hamed
,
J.
,
Amir
,
K.
,
Baris
,
F.
, and
Mitchell
,
R.
,
2017
, “
Kinematically-Constrained Redundant Cable-Driven Parallel Robots: Modeling, Redundancy Analysis, and Stiffness Optimization
,”
IEEE/ASME Trans. Mechat.
,
22
(
2
), pp.
921
930
. 10.1109/TMECH.2016.2639053
21.
Surdilovic
,
D.
,
Radojicic
,
J.
, and
Krüger
,
J.
,
2013
, “Geometric Stiffness Analysis of Wire Robots: A Mechanical Approach,”
Cable-Driven Parallel Robots. Mechanisms and Machine Science
,
T.
Bruckmann
, and
A.
Pott
, eds., vol.
12
,
Springer
,
Berlin, Heidelberg
.
22.
Yuan
,
H.
,
Courteille
,
E.
, and
Deblaise
,
D.
,
2015
, “
Static and Dynamic Stiffness Analyses of Cable-Driven Parallel Robots With Non-Negligible Cable Mass and Elasticity
,”
Mech. Mach. Theory
,
85
, pp.
64
81
.http://dx.doi.org/10.1016/j.mechmachtheory.2014.10.010
23.
Arsenault
,
M.
,
2013
, “
Workspace and Stiffness Analysis of a Three-Degree-of-Freedom Spatial Cable-Suspended Parallel Mechanism While Considering Cable Mass
,”
Mech. Machine Theory
,
66
(
Complete
), pp.
1
13
. 10.1016/j.mechmachtheory.2013.03.003
24.
Zi
,
B.
,
Wang
,
N.
,
Qian
,
S.
, and
Bao
,
K.
,
2019
, “
Design, Stiffness Analysis and Experimental Study of a Cable-Driven Parallel 3D Printer
,”
Mech. Mach. Theory.
,
132
, pp.
207
222
. 10.1016/j.mechmachtheory.2018.11.003
25.
Nan
,
M.
,
Jingjun
,
Y.
,
Xin
,
D.
, and
Dragos
,
A.
,
2018
, “
Design and Stiffness Analysis of a Class of 2-DOF Tendon Driven Parallel Kinematic Mechanism
,”
Mech. Machine Theory
,
129
, pp.
202
217
. 10.1016/j.mechmachtheory.2018.07.023
You do not currently have access to this content.