Abstract

The kinematic design, development, and navigation control of a new autonomous mobile manipulator for unstructured terrain is presented in this work. An innovative suspension system is designed based on the kinematic synthesis of an adaptable, passive mechanism. This novel suspension can compensate for irregularities in the terrain by using two pairs of bogies joined by a crank-slider mechanism and facilitates the control of the robotic platform using video cameras. The mobile robot is also equipped with a robotic manipulator, of which a synthesis, simulation, and experimental validation are presented. Additionally, manipulation is accomplished during motion on rough terrain. The proposed mobile robot has been fabricated using additive manufacturing (AM) techniques. A vision-based control approach, from here on named mobile linear-camera space manipulation (MLCSM), for mobile manipulators has been synthesized and implemented to conduct experimental tests. This mobile manipulator has been designed to traverse uneven terrain so that the loading platform is kept close to horizontal while crossing obstacles up to one-third of the size of its wheels. This feature allows for the onboard cameras to stay oriented toward the target; it also allows for any device mounted on the payload platform to remain nearly horizontal during the task. The developed control approach allows us to estimate the position and orientation of the manipulator’s end effector and update its trajectory along the path toward the target. The experiments show a final precision for engagement of a pallet within +/−2.5 mm in position and +/−2 deg in orientation

References

1.
Denker
,
A.
, and
Iseri
,
M. C.
,
2017
, “
Design and implementation of a semi-autonomous mobile search and rescue robot: SALVOR
,”
2017 International Artificial Intelligence and Data Processing Symposium (IDAP)
,
Malatya, Turkey
,
September
, p.
17333820
.
2.
Iwano
,
Y.
,
Osuka
,
K.
, and
Amano
,
H.
,
2005
, “
Experimental Study of Traction Robot System for Rescue Against Nuclear Disaster
,”
IEEE International Safety, Security and Rescue Rototics, Workshop
,
Kobe, Japan
,
June
.
3.
Kawabata
,
K.
,
Suzuki
,
K.
,
Isowa
,
M.
,
Horiuchi
,
K.
, and
Ito
,
R.
,
2017
, “
Development of a Robot Simulation System for Remotely Operated Robots for Operator Proficiency Training and Robot Performance Verification
,”
Proceedings of the 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)
,
Jeju, South Korea
,
June
.
4.
Green
,
J.
,
2013
, “
Mine Rescue Robots Requirements Outcomes From an Industry Workshop
,”
Proceedings of the 6th Robotics and Mechatronics Conference (RobMech)
,
Durban, South Africa
,
October
.
5.
Murphy
,
R.
,
Kravitz
,
J.
,
Stover
,
S.
, and
Shoureshi
,
R.
,
2009
, “
Mobile Robots in Mine Rescue and Recovery
,”
IEEE Rob. Autom. Mag.
,
16
(
2
), pp.
91
103
.
6.
Hajjaj
,
S. S. H.
, and
Sahari
,
K. S. M.
,
2013
, “
Review of Research in the Area of Agriculture Mobile Robots
,”
Proceedings of the 8th International Conference on Robotic, Vision, Signal Processing & Power Applications
,
Penang, Malaysia
,
November
, Springer, pp.
107
117
.
7.
Baumgartner
,
E. T.
,
2000
, “
In-Situ Exploration of Mars Using Rover Systems
,”
Proceedings of the AIAA Space 2000 Conference
,
Long Beach, CA
,
September
.
8.
Miller
,
D. P.
, and
Lee
,
T.-L.
,
2002
, “
High-Speed Traversal of Rough Terrain Using a Rocker-Bogie Mobility System
,”
Space 2002 and Robotics
,
Albuquerque, NM
,
March
, pp.
428
434
.
9.
Siegwart
,
R.
,
Thüer
,
T.
,
Lamon
,
P.
, and
Krebs
,
A.
,
2006
, “
CRAB-Exploration Rover With Advanced Obstacle Negotiation Capabilities
,”
Proceedings of the 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA 2006) ESTEC
,
Noordwijk, The Netherlands
,
Nov. 28–30
,
European Space Research and Technology Centre (ESTEC)
, p.
2.2
. 1.3.
10.
Di Paola
,
D.
,
Milella
,
A.
,
Cicirelli
,
G.
, and
Distante
,
A.
,
2010
, “
An Autonomous Mobile Robotic System for Surveillance of Indoor Environments
,”
Int. J. Adv. Rob. Syst.
,
7
(
1
), p.
8
.
11.
Siegwart
,
R.
,
Lamon
,
P.
,
Estier
,
T.
,
Lauria
,
M.
, and
Piguet
,
R.
,
2002
, “
Innovative Design for Wheeled Locomotion in Rough Terrain
,”
Rob. Auton. Syst.
,
40
(
2–3
), pp.
151
162
.
12.
Kehoe
,
M.
, and
Piovesan
,
D.
, “
Taxonomy of Two Dimensional Bio-inspired Locomotion Systems
,”
Proceedings of 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
, pp.
3703
3706
.
13.
Jiang
,
H.
,
Xu
,
G.
,
Zeng
,
W.
, and
Gao
,
F.
,
2019
, “
Design and Kinematic Modeling of a Passively-Actively Transformable Mobile Robot
,”
Mech. Mach. Theory
,
142
(
1
), p.
103591
.
14.
Levine
,
S. P.
,
Bell
,
D. A.
,
Jaros
,
L. A.
,
Simpson
,
R. C.
,
Koren
,
Y.
, and
Borenstein
,
J.
,
1999
, “
The NavChair Assistive Wheelchair Navigation System
,”
Rehabil. Eng.
,
7
(
4
), pp.
443
451
.
15.
Medina-Rivera
,
V. C.
,
Cardenas
,
A.
, and
Medellin-Castillo
,
H.
, “
Kinematical Design and Simulation of a Mobile Robot With Adaptable Suspension
,”
Proceedings of ASME International Mechanical Engineering Congress and Exposition
, pp.
277
284
.
16.
Lv
,
K.
,
Mu
,
X.
,
Li
,
L.
,
Xue
,
W.
,
Wang
,
Z.
, and
Xu
,
L.
,
2019
, “
Design and Test Methods of Rubber-Track Conversion System
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
233
(
7
), pp.
1903
1929
.
17.
Wang
,
P.
,
Rui
,
X.
,
Yu
,
H.
, and
Li
,
B.
,
2020
, “
Dynamics Modeling and Control of Active Track Tensioning System for Tracked Vehicle
,”
J. Vib. Control
,
26
(
11–12
), pp.
989
1000
.
18.
Picardi
,
G.
,
Chellapurath
,
M.
,
Iacoponi
,
S.
,
Stefanni
,
S.
,
Laschi
,
C.
, and
Calisti
,
M.
,
2020
, “
Bioinspired Underwater Legged Robot for Seabed Exploration With Low Environmental Disturbance
,”
Sci. Rob.
,
5
(
42
), p.
eaaz1012
.
19.
Spröwitz
,
A.
,
Tuleu
,
A.
,
Vespignani
,
M.
,
Ajallooeian
,
M.
,
Badri
,
E.
, and
Ijspeert
,
A. J.
,
2013
, “
Towards Dynamic Trot Gait Locomotion: Design, Control, and Experiments With Cheetah-Cub, a Compliant Quadruped Robot
,”
Int. J. Rob. Res.
,
32
(
8
), pp.
932
950
.
20.
Siegwart
,
R.
,
2006
, “Mobile Robots Facing the Real World,”
Springer Tracts in Advanced Robotics
, Vol.
24
,
S.
Yuta
,
H.
Asama
,
E.
Prassler
,
T.
Tsubouchi
, and
S.
Thrun
, eds.,
Springer-Verlag
,
Berlin
, pp.
21
30
.
21.
Grasse
,
R.
,
Morère
,
Y.
, and
Pruski
,
A.
,
2010
, “
Assisted Navigation for Persons With Reduced Mobility: Path Recognition Through Particle Filtering (Condensation Algorithm)
,”
J. Intell. Rob. Syst.
,
60
(
1
) pp.
19
57
.
22.
Ip
,
Y. L.
,
Rad
,
A. B.
,
Wong
,
Y. K.
,
Liu
,
Y.
, and
Ren
,
X. M.
,
2010
, “
A Localization Algorithm for Autonomous Mobile Robots via a Fuzzy Tuned Extended Kalman Filter
,”
Adv. Rob.
,
24
(
1–2
), pp.
179
206
.
23.
Sprunk
,
C.
,
Tipaldi
,
G. D.
,
Cherubini
,
A.
, and
Burgard
,
W.
,
2013
, “
Lidar-Based Teach-and-Repeat of Mobile Robot Trajectories
,”
Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Tokyo, Japan
,
November
, pp.
3144
3149
.
24.
Pinto
,
M.
,
Sobreira
,
H.
,
Moreira
,
A. P.
,
Mendonça
,
H.
, and
Matos
,
A.
,
2013
, “
Self-localisation of Indoor Mobile Robots Using Multi-hypotheses and a Matching Algorithm
,”
Mechatronics
,
23
(
6
), pp.
727
737
.
25.
Rusdinar
,
A.
,
Kim
,
J.
, and
Kim
,
S.
,
2010
, “
Error Pose Correction of Mobile Robot for SLAM Problem Using Laser Range Finder Based on Particle Filter
,”
Proceedings of International Conference on Control, Automation and Systems
,
Gyeonggi-do, Korea
,
October
.
26.
La
,
H. M.
,
Lim
,
R. S.
,
Basily
,
B. B.
,
Gucunski
,
N.
,
Yi
,
J.
,
Maher
,
A.
,
Romero
,
F. A.
, and
Parvardeh
,
H.
,
2013
, “
Mechatronic Systems Design for an Autonomous Robotic System for High-Efficiency Bridge Deck Inspection and Evaluation
,”
IEEE/ASME Trans. Mechatron.
,
18
(
6
), pp.
1655
1664
.
27.
Hiremath
,
S. A.
,
van der Heijden
,
G. W. A. M.
,
van Evert
,
F. K.
,
Stein
,
A.
, and
Ter Braak
,
C. J.
,
2014
, “
Laser Range Finder Model for Autonomous Navigation of a Robot in a Maize Field Using a Particle Filter
,”
Comput. Electron. Agric.
,
100
(
1
), pp.
41
50
.
28.
Del Castillo
,
G.
,
Skaar
,
S.
,
Cárdenas
,
A.
, and
Fehr
,
L.
,
2006
, “
A Sonar Approach to Obstacle Detection for a Vision-Based Autonomous Wheelchair
,”
Rob. Auton. Syst.
,
54
(
12
), pp.
967
981
.
29.
Li
,
M.-H.
,
Hong
,
B.-R.
,
Cai
,
Z.-S.
,
Piao
,
S.-H.
, and
Huang
,
Q.-C.
,
2008
, “
Novel Indoor Mobile Robot Navigation Using Monocular Vision
,”
Eng. Appl. Artif. Intell.
,
21
(
3
), pp.
485
497
.
30.
Romero
,
B.
,
Camacho
,
A.
,
Varona
,
J.
,
Delgado
,
C.
, and
Velázquez
,
R.
,
2009
, “
A Low-Cost Electric Power Wheelchair With Manual and Vision-Based Control Systems
,”
Proceedings of IEEE AFRICON
,
Nairobi, Kenya
,
September
.
31.
Jia
,
Z.
,
Balasuriya
,
A.
, and
Challa
,
S.
,
2008
, “
Vision Based Data Fusion for Autonomous Vehicles Target Tracking Using Interacting Multiple Dynamic Models
,”
Comput. Vision Image Understanding
,
109
(
1
), pp.
1
21
.
32.
De La Cruz
,
C.
,
Cardoso Celeste
,
W.
, and
Freire Bastos
,
T.
,
2011
, “
A Robust Navigation System for Robotic Wheelchairs
,”
Control Eng. Pract.
,
19
(
6
), pp.
575
590
.
33.
Wu
,
Y.-H.
,
Lu
,
B.-Y.
,
Chen
,
H.-Y.
,
Ou-Yang
,
Y.
,
Lai
,
J.-S.
,
Kuo
,
T.-S.
, and
Chong
,
F.-C.
,
2006
, “
The Development of M3S-Based GPS Navchair and Tele-monitor System
,”
Proceedings of the 2005 IEEE, Engineering in Medicine and Biology 27th Annual Conference
,
Shanghai, China
,
January
.
34.
Aghili
,
F.
, and
Salerno
,
A.
,
2013
, “
Driftless 3-D Attitude Determination and Positioning of Mobile Robots By Integration of IMU With Two RTK GPSs
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
21
31
.
35.
Chavez-Romero
,
R.
,
Cardenas
,
A.
,
Maya
,
M.
,
Sanchez
,
A.
, and
Piovesan
,
D.
,
2016
, “
Camera Space Particle Filter for the Robust and Precise Indoor Localization of a Wheelchair
,”
J. Sens.
,
2016
(
1
), pp.
1
11
.
36.
Coronado
,
E.
,
Maya
,
M.
,
Cardenas
,
A.
,
Guarneros
,
O.
, and
Piovesan
,
D.
,
2017
, “
Vision-Based Control of a Delta Parallel Robot via Linear Camera-Space Manipulation
,”
J. Intell. Rob. Syst.
,
85
(
1
), pp.
93
106
.
37.
González
,
A.
,
Gonzalez-Galvan
,
E. J.
,
Maya
,
M.
,
Cardenas
,
A.
, and
Piovesan
,
D.
,
2019
, “
Estimation of Camera-Space Manipulation Parameters by Means of an Extended Kalman Filter: Applications to Parallel Robots
,”
Int. J. Adv. Rob. Syst.
,
16
(
2
), pp.
1
10
.
38.
Martinez Martinez
,
F. D. J.
,
Blum
,
L.
,
Rider
,
S.
,
Cárdenas
,
A.
, and
Piovesan
,
D.
,
2018
, “
Underwater Tracking System Based on Camera Space Manipulation: Static Calibration of GoPro Cameras
,”
Proceedings of ASME International Mechanical Engineering Congress and Exposition
,
Tampa, FL
,
January
.
39.
Lopez-Lara
,
J. G.
,
Maya
,
M. E.
,
González
,
A.
,
Cardenas
,
A.
, and
Felix
,
L.
,
2020
, “
Image-Based Control of Delta Parallel Robots via Enhanced LCM-CSM to Track Moving Objects
,”
Ind. Rob.: Int. J. Rob. Res. Appl.
,
47
(
4
), pp.
559
567
.
40.
Özgür
,
E.
,
Dahmouche
,
R.
,
Andreff
,
N.
, and
Martinet
,
P.
,
2014
, “
A Vision-Based Generic Dynamic Model of PKMs and its Experimental Validation on the Quattro Parallel Robot
,”
Proceedings of 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Besancon, France
,
July
, pp.
937
942
.
41.
Tsai
,
R.
,
1987
, “
A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses
,”
IEEE J. Rob. Autom.
,
3
(
4
), pp.
323
344
.
42.
Tsai
,
R. Y.
,
1986
, “
An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision
,”
Proceedings of Computer Vision and Pattern Recognition
,
Miami Beach, FL
,
June 1985
.
43.
Tsai
,
R. Y.
, and
Lenz
,
R. K.
,
1989
, “
A New Technique for Fully Autonomous and Efficient 3 D Robotics Hand/Eye Calibration
,”
IEEE Trans. Rob. Autom.
,
5
(
3
), pp.
345
358
.
44.
Seelinger
,
M.
, and
Yoder
,
J.-D.
,
2006
, “
Automatic Visual Guidance of a Forklift Engaging a Pallet
,”
Rob. Auton. Syst.
,
54
(
12
), pp.
1026
1038
.
45.
Rendón-Mancha
,
J. M.
,
Cárdenas
,
A.
,
García
,
M. A.
, and
Lara
,
B.
,
2010
, “
Robot Positioning Using Camera-Space Manipulation With a Linear Camera Model
,”
IEEE Trans. Rob.
,
26
(
4
), pp.
726
733
.
46.
González-Galván
,
E. J.
,
Pazos-Flores
,
F.
,
Skaar
,
S. B.
, and
Cardenas-Galindo
,
A.
,
2002
, “
Camera Pan/Tilt to Eliminate the Workspace-Size/Pixel-Resolution Tradeoff With Camera–Space Manipulation
,”
Rob. Comput.-Integr. Manuf.
,
18
(
2
), pp.
95
104
.
47.
Cárdenas
,
A.
,
Goodwine
,
B.
,
Skaar
,
S.
, and
Seelinger
,
M.
,
2003
, “
Vision-based Control of a Mobile Base and On-board arm
,”
Int. J. Rob. Res.
,
22
(
9
), pp.
677
698
.
48.
Duleba
,
I.
,
2000
, “
Modeling and Control of Mobile Manipulators
,”
IFAC Proc. Vol.
,
33
(
27
), pp.
447
452
.
49.
Galicki
,
M.
,
2019
, “
Optimal Cascaded Control of Mobile Manipulators
,”
Nonlinear Dyn.
,
96
(
2
), pp.
1367
1389
.
50.
Bandala
,
M.
,
West
,
C.
,
Monk
,
S.
,
Montazeri
,
A.
, and
Taylor
,
C. J.
,
2019
, “
Vision-Based Assisted Tele-operation of a Dual-Arm Hydraulically Actuated Robot for Pipe Cutting and Grasping in Nuclear Environments
,”
Robotics
,
8
(
2
), p.
42
.
51.
Seelinger
,
M.
,
Yoder
,
J.
,
Baumgartner
,
E. T.
, and
Skaar
,
S. B.
,
2002
, “
High-Precision Visual Control of Mobile Manipulators
,”
IEEE Trans. Rob. Autom.
,
18
(
6
), pp.
957
965
.
52.
Patel
,
N.
,
Slade
,
R.
, and
Clemmet
,
J.
,
2010
, “
The ExoMars Rover Locomotion Subsystem
,”
J. Terramech.
,
47
(
4
), pp.
227
242
.
53.
Choi
,
D.
,
Kim
,
Y.
,
Jung
,
S.
,
Kim
,
H. S.
, and
Kim
,
J.
,
2015
, “
R-Mo: A New Mobile Robotic Platform to Reduce Variations in Height and Pitch Angle on Rugged Terrain
,”
Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
October
.
54.
Martinez
,
F.
,
Mihalko
,
A.
,
Blum
,
L.
,
Cardenas
,
A.
, and
Piovesan
,
D.
,
2019
, “
Is Linear Camera Space Manipulation Impervious to Systematic Distortions?
Proceedings of ASME International Mechanical Engineering Congress and Exposition
,
Pittsburgh, PA
,
January
, American Society of Mechanical Engineers, p.
V003T004A076
.
55.
Martinez
,
F.
,
Blum
,
L.
,
Rider
,
S.
,
Cardenas
,
A.
, and
Piovesan
,
D.
,
2017
, “
Re-calibration of Camera Space Manipulation Techniques Accounting for Fisheye Lens Radial Distortion
,”
Proceedings of 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)
,
Philadelphia, PA
,
December
.
56.
Skaar
,
S. B.
,
Brockman
,
W. H.
, and
Jang
,
W. S.
,
1990
, “
Three-Dimensional Camera Space Manipulation
,”
Int. J. Rob. Res.
,
9
(
4
), pp.
22
39
.
57.
Skaar
,
S. B.
,
Brockman
,
W. H.
, and
Hanson
,
R.
,
1987
, “
Camera-Space Manipulation
,”
Int. J. Rob. Res.
,
6
(
4
), pp.
20
32
.
58.
Horn
,
B. K. P.
,
1986
,
Robot Vision
,
MIT Press
,
Cambridge, MA
.
59.
Lipkin
,
H.
,
2005
, “
A Note on Denavit-Hartenberg Notation in Robotics
,”
Proceedings of the 29th Mechanisms and Robotics Conference, Parts A and B, ASMEDC
,
Long Beach, CA
,
September
.
60.
Hartley
,
R.
, and
Zisserman
,
A.
,
2004
,
Multiple View Geometry in Computer Vision
,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.