Abstract

Cosimulation is widely used as a powerful tool for performance evaluation of systems design. This approach presents advantages over traditional design methodologies for saving money and time in the development process and the possibility of evaluating rapidly design alternatives by using virtual prototypes. This article presents an adams/matlab cosimulation for the dynamics and control of a Single-Wheel pendulum ROBot (SWROB) with inertial locomotion actuation to characterize design solutions by means of validation of analytical results. The obtained results by the proposed cosimulation show a significant performance based on the analytical and programming efforts in characterizing and simulating the designed system model. Moreover, open-loop experimental results are presented to validate both the analytical model and the virtual prototype.

References

1.
Rubio
,
F.
,
Valero
,
F.
, and
Llopis-Albert
,
C.
,
2019
, “
A Review of Mobile Robots: Concepts, Methods, Theoretical Framework, and Applications
,”
Int. J. Adv. Rob. Syst.
,
16
(
2
), pp.
1
22
.
2.
Ceccarelli
,
M.
, and
Kececi
,
E. F.
,
2015
,
Designs and Prototypes of Mobile Robots
,
ASME Press
,
New York
.
3.
Kececi
,
E. F.
, and
Ceccarelli
,
M.
,
2015
,
Mobile Robots for Dynamic Environments
,
ASME Press
,
New York
.
4.
Nagarajan
,
U.
,
Kantor
,
G.
, and
Hollis
,
R.
,
2014
, “
The Ballbot: An Omnidirectional Balancing Mobile Robot
,”
Int. J. Rob. Res.
,
33
(
6
), pp.
917
930
.
5.
Navabi
,
H.
,
Sadeghnejad
,
S.
,
Ramezani
,
S.
, and
Baltes
,
J.
,
2017
, “
Position Control of the Single Spherical Wheel Mobile Robot by Using the Fuzzy Sliding Mode Controller
,”
Adv. Fuzzy Syst.
,
2017
, pp.
1
10
.
6.
Pham
,
D. B.
,
Weon
,
I.
, and
Lee
,
S.
,
2020
, “
Partial Feedback Linearization Double-Loop Control for a Pseudo-2d Ridable Ballbot
,”
Int. J. Control. Autom. Syst.
,
18
(
5
), pp.
1310
1323
.
7.
Chase
,
R.
, and
Pandya
,
A.
,
2012
, “
A Review of Active Mechanical Driving Principles of Spherical Robots
,”
Robotics
,
1
(
1
), pp.
3
23
.
8.
DeJong
,
B. P.
,
Karadogan
,
E.
,
Yelamarthi
,
K.
, and
Hasbany
,
J.
,
2017
, “
Design and Analysis of a Four-Pendulum Omnidirectional Spherical Robot
,”
J. Intel. Rob. Syst.
,
86
(
1
), pp.
3
15
.
9.
Ivanova
,
T. B.
,
Kilin
,
A. A.
, and
Pivovarova
,
E. N.
,
2018
, “
Controlled Motion of a Spherical Robot With Feedback
,”
J. Dyn. Control Syst.
,
24
(
3
), pp.
497
510
.
10.
Reina
,
G.
,
Foglia
,
M. M.
,
Millela
,
A.
, and
Gentile
,
A.
,
2006
, “
Visual and Tactile-Based Terrain Analysis Using a Cylindrical Mobile Bobot
,”
J. Dyn. Syst. Meas. Control.
,
128
(
1
), pp.
165
170
.
11.
Jin
,
H.
,
Wang
,
T.
,
Yu
,
F.
,
Zhu
,
Y.
,
Zhao
,
J.
, and
Lee
,
J.
,
2016
, “
Unicycle Robot Stabilized by the Effect of Gyroscopic Precession and Its Control Realization Based on Centrifugal Force Compensation
,”
IEEE/ASME Trans. Mech.
,
21
(
6
), pp.
2737
2745
.
12.
Vos
,
W. D.
,
Flotow
,
A. H. V.
, and
Zhuang
,
H.
,
1990
, “
Dynamics and Nonlinear Adaptive Control of an Autonomous Unicycle: Theory and Experiment
,”
Proceedings of the 29th IEEE Conference on Decision and Control (CDC 1990)
,
Honolulu, HI
,
Dec. 5–7
, IEEE, pp.
182
185
.
13.
Jin
,
H.
,
Hwang
,
J.
, and
Lee
,
J.
,
2011
, “
A Balancing Control Strategy for a One-Wheel Pendulum Robot Based on Dynamic Model Decomposition: Simulations and Experiments
,”
IEEE/ASME Trans. Mech.
,
16
(
4
), pp.
763
768
.
14.
Zhu
,
Y.
,
Gao
,
Y.
,
Xu
,
C.
,
Zhao
,
J.
,
Jin
,
H.
, and
Lee
,
J.
,
2015
, “
Adaptive Control of a Gyroscopically Stabilized Pendulum and Its Application to a Single-Wheel Pendulum Robot
,”
IEEE/ASME Trans. Mech.
,
20
(
5
), pp.
2095
2106
.
15.
Lee
,
J.
,
Han
,
S.
, and
Lee
,
J.
,
2013
, “
Decoupled Dynamic Control for Pitch and Roll Axes of the Unicycle Robot
,”
IEEE. Trans. Ind. Electron.
,
60
(
9
), pp.
3814
3822
.
16.
Park
,
J. H.
, and
Jung
,
S.
,
2013
, “
Development and Control of a Single-Wheel Robot: Practical Mechatronics Approach
,”
Mechatronics
,
23
(
6
), pp.
594
606
.
17.
Lee
,
S. D.
, and
Jung
,
S.
,
2015
, “
Experimental Verification of Stability Region of Balancing a Single-Wheel Robot: An Inverted Stick Model Approach
,”
Proceedings of 41st Annual Conference of the IEEE Industrial Electronics Society (IECON 2015)
,
Yokohama, Japan
,
Nov. 9–12
, IEEE, pp.
4556
4561
.
18.
Vasudevan
,
H.
,
Dollar
,
A. M.
, and
Morrell
,
J. B.
,
2015
, “
Design for Control of Wheeled Inverted Pendulum Platforms
,”
ASME J. Mech. Rob.
,
7
(
4
), pp.
1
12
.
19.
Forouhar
,
M.
,
Abedin-Nasab
,
M. H.
, and
Liu
,
G.
,
2020
, “
Introducing Gyrosym: A Single-Wheel Robot
,”
Int. J. Dyn. Control
,
8
(
2
), pp.
404
417
.
20.
Fitzgerald
,
J.
,
Pierce
,
K.
, and
Larsen
,
P. G.
,
2014
, “
Co-Modelling and Co-Simulation in the Engineering of Systems of Cyber-Physical Systems
,”
Proceedings of 2014 9th International Conference on System of Systems Engineering (SOSE)
,
Glenelg, SA, Australia
,
June 9–13
, IEEE, pp.
67
72
.
21.
Fitzgerald
,
J.
,
Larsen
,
P. G.
, and
Pierce
,
K.
,
2019
, “Multi-Modelling and Co-Simulation in the Engineering of Cyber-Physical Systems: Towards the Digital Twin,”
From Software Engineering to Formal Methods and Tools, and Back
,
M.
ter Beek
,
A.
Fantechi
, and
L.
Semini
, eds., 1st ed., Vol.
11865
,
Lecture Notes in Computer Science
,
Springer
,
Cham, Switzerland
, pp.
40
55
, Chapter 4.
22.
Gomes
,
C.
,
Thule
,
C.
,
Broman
,
D.
,
Larsen
,
P. G.
, and
Vangheluwe
,
H.
,
2018
, “
Co-Simulation: A Survey
,”
ACM Comput. Surveys
,
51
(
3
), pp.
1
33
.
23.
Baran
,
D.
, and
Lisowski
,
W.
,
2013
, “
Numerical Simulation and Co-Simulation in Analysis of Manipulator Dynamics
,”
Mech. Control
,
32
(
4
), pp.
129
135
.
24.
Christiansen
,
M. P.
,
Larse
,
M. G.
, and
Jorgensen
,
R. N.
,
2015
, “
Robotic Design Choice Overview Using Co-Simulation and Design Space Exploration
,”
Robotics
,
4
(
4
), pp.
398
420
.
25.
Sudharsan
,
J.
, and
Karunamoorthy
,
L.
,
2016
, “
Path Planning and Co-Simulation Control of 8 Dof Anthropomorphic Robotic Arm
,”
Int. J. Simul. Model.
,
15
(
2
), pp.
302
312
.
26.
Parthasarathy
,
T.
,
Srinivasaragavan
,
V.
, and
Santhanakrishnan
,
S.
,
2016
, “
Adams-Matlab Co-Simulation of a Serial Manipulator
,”
Proceedings of the 3rd International Conference on Mechatronics and Mechanical Engineering (ICMME 2016)
,
Shanghai, China
,
Oct. 21–23
, EDP Sciences, pp.
1
6
.
27.
Sosa-Mendez
,
D.
,
Lugo-Gonzalez
,
E.
,
Arias-Montiel
,
M.
, and
Garcia-Garcia
,
R. A.
,
2017
, “
Adams-Matlab Co-Simulation for Kinematics, Dynamics, and Control of the Stewart–Gough Platform
,”
Int. J. Adv. Rob. Syst.
,
14
(
4
), pp.
1
10
.
28.
Angel
,
L.
,
Hernandez
,
C.
, and
Diaz-Quintero
,
C.
,
2013
, “
Modeling, Simulation and Control of a Differential Steering Type Mobile Robot
,”
Proceedings of the 32nd Chinese Control Conference
,
Xi'an, China
,
July 26–28
, IEEE, pp.
8757
8762
.
29.
Ciszewsk
,
M.
,
Buratowski
,
T.
, and
Giergiel
,
M.
,
2018
, “
Modeling, Simulation and Control of a Pipe Inspection Mobile Robot With an Active Adaptation System
,”
IFAC-PapersOnLine
,
51
(
22
), pp.
132
137
.
30.
Han
,
J.
,
Ren
,
G.
, and
Li
,
D.
,
2017
, “
Co-Simulation of a Tracked Mobile Robot Based on Recurdyn and Simulink
,”
Adv. Eng. Res.
,
130
, pp.
1170
1174
.
31.
Herrera-Cordero
,
M. E.
,
Arias-Montiel
,
M.
,
Ceccarelli
,
M.
, and
Lugo-Gonzalez
,
E.
,
2020
, “On the Dynamics and Control of a Single-Wheel Robot With Inertial Locomotion,”
Industrial and Robotic Systems Proceedings of LASIRS 2019
,
E.
Hernandez
,
S.
Keshtkar
, and
S.
Valdez
, eds., 1st ed., Vol.
86
,
Mechanisms and Machine Science
,
Springer
,
Cham, Switzerland
, pp.
249
260
, Chapter 24.
32.
Herrera-Cordero
,
M. E.
,
Arias-Montiel
,
M.
, and
Lugo-Gonzalez
,
E.
,
2019
, “Design and Dynamic Modeling of a Novel Single-Wheel Pendulum Robot,”
Mechanism Design for Robotics. MEDER 2018
,
A.
Gasparetto
, and
M.
Ceccarelli
, eds., 1st ed., Vol.
66
,
Mechanisms and Machine Science
,
Springer
,
Cham, Switzerland
, pp.
353
360
, Chapter 42.
33.
McConville
,
J.
,
2015
,
Introduction to Mechanical System Simulation Using Adams
,
SDC Publications
,
New York
.
34.
Roubal
,
J.
,
Husek
,
P.
, and
Stecha
,
J.
,
2010
, “
Linearization: Students Forget the Operating Point
,”
IEEE Trans. Edu.
,
53
(
3
), pp.
413
418
.
35.
Zanasi
,
R.
, and
Cuoghi
,
S.
,
2011
, “
Direct Methods for the Synthesis of Pid Compensators: Analytical and Graphical Design
,”
Proceedings of IECON 2011—37th Annual Conference of the IEEE Industrial Electronics Society
,
Melbourne, VIC, Australia
,
Nov. 7–10
, IEEE, pp.
552
557
.
You do not currently have access to this content.