Abstract

Diverse applications including switches, deployable structures, and reconfigurable robots can benefit from bi-stability characteristics. However, the complexity of the implementation and the limitation of the structural configuration makes it difficult to apply conventional bi-stable mechanisms to the structures that require rotational bi-stability. In this paper, an implementation method using cylindrical magnets for the rotational bi-stable mechanism is proposed. The proposed bi-stable mechanism consists of a revolute joint with two links. It has rotational bi-stability through the magnetic force relationship between the array of magnets on each link. To identify the characteristics of the proposed bi-stable mechanism, a cylindrical permanent magnet is considered as an electromagnet model that consists of one ring with a virtual electric current. The magnetic field of the cylindrical permanent magnet can be calculated using the Biot–Savart law. Similarly, the magnetic force between two cylindrical permanent magnets is calculated using the Lorentz force law. The criteria of the magnet array for symmetric bi-stability are described and the potential energy diagram of the rotation link is considered as the performance criterion to identify the stable state. The proposed bi-stable mechanism was applied to the prototype of a deployable structure consisting of two links. The load testing of the structure against external torque was performed and it was obtained that the rotation link can stay within 5 deg angle to the maximum load applied and was experimentally verified with good agreement.

References

1.
Hyer
,
M. W.
,
1981
, “
Some Observations on the Cured Shape of Thin Unsymmetric Laminates
,”
J. Compos. Mater.
,
15
(
2
), pp.
175
194
.
2.
Kim
,
S. W.
,
Koh
,
J. S.
,
Lee
,
J. G.
,
Ryu
,
J.
,
Cho
,
M.
, and
Cho
,
K. J.
,
2014
, “
Flytrap-Inspired Robot Using Structurally Integrated Actuation Based on Bistability and a Developable Surface
,”
Bioinspir. Biomim.
,
9
(
3
), p.
036004
.
3.
Schultz
,
M. R.
,
2008
, “
A Concept for Airfoil-Like Active Bistable Twisting Structures
,”
J. Intell. Mater. Syst. Struct.
,
19
(
2
), pp.
157
169
.
4.
Daynes
,
S.
,
Weaver
,
P. M.
, and
Potter
,
K. D.
,
2009
, “
Aeroelastic Study of Bistable Composite Airfoils
,”
J. Aircr.
,
46
(
6
), pp.
2169
2173
.
5.
Arrieta
,
A. F.
,
Bilgen
,
O.
,
Friswell
,
M. I.
, and
Ermanni
,
P.
,
2013
, “
Modelling and Configuration Control of Wing-Shaped Bi-Stable Piezoelectric Composites Under Aerodynamic Loads
,”
Aerosp. Sci. Technol.
,
29
(
1
), pp.
453
461
.
6.
Cazottes
,
P.
,
Fernandes
,
A.
,
Pouget
,
J.
, and
Hafez
,
M.
,
2009
, “
Bistable Buckled Beam: Modeling of Actuating Force and Experimental Validations
,”
ASME J. Mech. Des.
,
131
(
10
), p.
101001
.
7.
Kang
,
C.-G.
,
Lee
,
J.-S.
, and
Han
,
J.-H.
,
2014
, “
Development of Bi-Stable and Millimeter-Scale Displacement Actuator Using Snap-Through Effect for Reciprocating Control Fins
,”
Aerosp. Sci. Technol.
,
32
(
1
), pp.
131
141
.
8.
Addo-Akoto
,
R.
, and
Han
,
J.-H.
,
2019
, “
Bidirectional Actuation of Buckled Bistable Beam Using Twisted String Actuator
,”
J. Intell. Mater. Syst. Struct.
,
30
(
4
), pp.
506
516
.
9.
Hafez
,
M.
,
Lichter
,
M. D.
, and
Dubowsky
,
S.
,
2003
, “
Optimized Binary Modular Reconfigurable Robotic Devices
,”
IEEE/ASME Trans. Mechatron.
,
8
(
1
), pp.
18
25
.
10.
Wingert
,
A.
,
Lichter
,
M. D.
, and
Dubowsky
,
S.
,
2006
, “
On the Design of Large Degree-of-Freedom Digital Mechatronic Devices Based on Bistable Dielectric Elastomer Actuators
,”
IEEE/ASME Trans. Mechatron.
,
11
(
4
), pp.
448
456
.
11.
Follador
,
M.
,
Conn
,
A. T.
, and
Rossiter
,
J.
,
2015
, “
Bistable Minimum Energy Structures (BiMES) for Binary Robotics
,”
Smart Mater. Struct.
,
24
(
6
), p.
065037
.
12.
Liu
,
Y.
,
Liu
,
B.
,
Yin
,
T.
,
Xiang
,
Y.
,
Zhou
,
H.
, and
Qu
,
S.
,
2019
, “
Bistable Rotating Mechanism Based on Dielectric Elastomer Actuator
,”
Smart Mater. Struct.
,
29
(
1
), p.
015008
.
13.
Wang
,
N.
,
Cui
,
C.
,
Chen
,
B.
,
Guo
,
H.
, and
Zhang
,
X.
,
2019
, “
Design of Translational and Rotational Bistable Actuators Based on Dielectric Elastomer
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041011
.
14.
Sonmez
,
U.
, and
Tutum
,
C. C.
,
2008
, “
A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
,
130
(
4
), p.
042304
.
15.
Chen
,
G.
,
Aten
,
Q. T.
,
Zirbel
,
S. A.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2010
, “
A Tristable Mechanism Configuration Employing Orthogonal Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
014501
.
16.
Zirbel
,
S. A.
,
Tolman
,
K. A.
,
Trease
,
B. P.
, and
Howell
,
L. L.
,
2016
, “
Bistable Mechanisms for Space Applications
,”
PLoS One
,
11
(
12
), p.
e0168218
.
17.
Suh
,
J. E.
,
Jeong
,
S. Y.
, and
Han
,
J. H.
,
2019
, “
A Two-Dimensional Modular Deployable Truss Structure With Bistability
,”
J. Intell. Mater. Syst. Struct.
,
30
(
3
), pp.
335
350
.
18.
Rodriguez
,
A. R.
,
2007
, “
Morphing Aircraft Technology Survey
,”
45th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NE
,
Jan. 8–11
, p.
1258
.
19.
Kang
,
W. R.
,
Kim
,
E. H.
,
Jeong
,
M. S.
, and
Lee
,
I.
,
2012
, “
Morphing Wing Mechanism Using an SMA Wire Actuator
,”
Int. J. Aeronaut. Space Sci.
,
13
(
1
), pp.
58
63
.
20.
Sofla
,
A. Y. N.
,
Meguid
,
S. A.
,
Tan
,
K. T.
, and
Yeo
,
W. K.
,
2010
, “
Shape Morphing of Aircraft Wing: Status and Challenges
,”
Mater. Des.
,
31
(
3
), pp.
1284
1292
.
You do not currently have access to this content.