Abstract

In this paper, a novel six degrees-of-freedom (DOF) hybrid kinematic machine (HKM) is designed, analyzed, and evaluated for precision polishing. The design adopts a 3-DOF tripod-based parallel mechanism (PM) to locate the workpiece, a 2-DOF serial mechanism (SM) to orient the polishing tool, and a functional extension limb to provide a redundant DOF when polishing the workpieces with axially symmetrical shapes. Compared with the existing HKMs, the most distinctive feature is that the position and orientation adjustments of the tool with respect to the workpiece are decoupled during the synchronous machining, thus allowing the rotational tool center point (RTCP) function to be conveniently realized. For the developed HKM, the kinematics are studied systematically, including position, velocity, acceleration, and workspace. The dynamic model of the PM is derived by employing the principle of virtual work. For a pre-defined trajectory, the required driving forces are obtained through dynamic simulation. Based on these analyses, a laboratory prototype of the HKM is designed and developed. A preliminary accuracy assessment of the HKM is implemented with a double ball-bar, and a series of polishing experiments are conducted to show the capacity and feasibility of the developed HKM.

References

1.
Fang
,
F. Z.
,
Zhang
,
X. D.
,
Weckenmann
,
A.
,
Zhang
,
G. X.
, and
Evans
,
C.
,
2013
, “
Manufacturing and Measurement of Freeform Optics
,”
CIRP Ann.
,
62
(
2
), pp.
823
846
.
2.
Fan
,
C.
,
Zhao
,
J.
,
Zhang
,
L.
,
Wong
,
Y. S.
,
Hong
,
G. S.
, and
Zhou
,
W.
,
2014
, “
Modeling and Analysis of the Material Removal Profile for Free Abrasive Polishing With Sub-Aperture Pad
,”
J. Mater. Process. Technol.
,
214
(
2
), pp.
285
294
.
3.
Wang
,
X.
,
Gao
,
H.
, and
Yuan
,
J.
,
2020
, “
Experimental Investigation and Analytical Modelling of the Tool Influence Function of the Ultra-Precision Numerical Control Polishing Method Based on the Water Dissolution Principle for KDP Crystals
,”
Precis. Eng.
,
65
, pp.
185
196
.
4.
Mohammad
,
A.
,
Hong
,
J.
, and
Wang
,
D. W.
,
2018
, “
Design of a Force-Controlled End-Effector With Low-Inertia Effect for Robotic Polishing Using Macro-Mini Robot Approach
,”
Robot. Comput. Integr. Manuf.
,
49
, pp.
54
65
.
5.
Feng
,
M.
,
Wu
,
Y.
,
Wang
,
Y.
,
Zeng
,
J.
,
Bitoh
,
T.
,
Nomura
,
M.
, and
Fujii
,
T.
,
2020
, “
Investigation on the Polishing of Aspheric Surfaces With a Doughnut-Shaped Magnetic Compound Fluid (MCF) Tool Using an Industrial Robot
,”
Precis. Eng.
,
61
, pp.
182
193
.
6.
Xiao
,
M.
,
Ding
,
Y.
,
Fang
,
Z.
, and
Yang
,
G.
,
2020
, “
Contact Force Modeling and Analysis for Robotic Tilted-Disc Polishing of Freeform Workpieces
,”
Precis. Eng.
,
66
, pp.
188
200
.
7.
Ye
,
J.
,
Niu
,
Z.
,
Zhang
,
X.
,
Wang
,
W.
, and
Xu
,
M.
,
2020
, “
In-Situ Deflectometic Measurement of Transparent Optics in Precision Robotic Polishing
,”
Precis. Eng.
,
64
, pp.
63
69
.
8.
Xu
,
P.
,
Yao
,
X.
,
Chen
,
L.
,
Liu
,
K.
, and
Bi
,
G.
,
2020
, “
Heuristic Kinematics of a Redundant Robot-Positioner System for Additive Manufacturing
,”
IEEE International Conference on Control, Automation and Robotics (ICCAR)
,
Singapore
,
Apr. 20–23
, pp.
119
123
.
9.
Xu
,
P.
,
Yao
,
X.
,
Liu
,
S.
,
Wang
,
H.
,
Liu
,
K.
,
Kumar
,
A. S.
,
Lu
,
W. F.
, and
Bi
,
G.
,
2021
, “
Stiffness Modeling of an Industrial Robot With a Gravity Compensator Considering Link Weights
,”
Mech. Mach. Theory
,
161
, p.
104331
.
10.
Li
,
Q.
,
Xu
,
L.
,
Chen
,
Q.
, and
Chai
,
X.
,
2019
, “
Analytical Elastostatic Stiffness Modeling of Overconstrained Parallel Manipulators Using Geometric Algebra and Strain Energy
,”
ASME J. Mech. Robot.
,
11
(
3
), p.
031007
.
11.
Stepanenko
,
O.
,
Bonev
,
I. A.
, and
Zlatanov
,
D.
,
2019
, “
A New 4-DOF Fully Parallel Robot With Decoupled Rotation for Five-Axis Micromachining Applications
,”
ASME J. Mech. Robot.
,
11
(
3
), p.
031010
.
12.
Zhang
,
W.
,
Zhang
,
W.
,
Ding
,
X.
, and
Sun
,
L.
,
2020
, “
Optimization of the Rotational Asymmetric Parallel Mechanism for Hip Rehabilitation With Force Transmission Factors
,”
ASME J. Mech. Robot.
,
12
(
4
), p.
041006
.
13.
Yang
,
H.
,
Fang
,
H.
,
Li
,
X.
, and
Fang
,
Y.
,
2020
, “
Workspace Augmentation for the Large-Scale Spherical Honeycombs Perfusion Using a Novel 5DOF Reconfigurable Manipulator
,”
ASME J. Mech. Robot.
,
12
(
6
), p.
064501
.
14.
Xie
,
Z.
,
Xie
,
F.
,
Liu
,
X.-J.
,
Wang
,
J.
, and
Shen
,
X.
,
2019
, “
Parameter Optimization for the Driving System of a 5 Degrees-of-Freedom Parallel Machining Robot With Planar Kinematic Chains
,”
ASME J. Mech. Robot.
,
11
(
4
), p.
041003
.
15.
Xu
,
L.
,
Chai
,
X.
,
Li
,
Q.
,
Zhang
,
L.
, and
Ye
,
W.
,
2019
, “
Design and Experimental Investigation of a New 2R1T Overconstrained Parallel Kinematic Machine With Actuation Redundancy
,”
ASME J. Mech. Robot.
,
11
(
3
), p.
031016
.
16.
Meng
,
Q.
,
Xie
,
F.
,
Liu
,
X.-J.
, and
Takeda
,
Y.
,
2020
, “
Screw Theory-Based Motion/Force Transmissibility Analysis of High-Speed Parallel Robots With Articulated Platforms
,”
ASME J. Mech. Robot.
,
12
(
4
), p.
041011
.
17.
Hennes
,
N.
, and
Staimer
,
D.
,
2004
, “
Application of PKM in Aerospace Manufacturing-High Performance Machining Centers ECOSPEED, ECOSPEED-F and ECOLINER
,”
Proceedings of the 4th Chemnitz Parallel Kinematics Seminar
,
Chemnitz, Germany
,
Apr. 20–21
, pp.
557
577
.
18.
Dong
,
C.
,
Liu
,
H.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2019
, “
A Screw Theory-Based Semi-Analytical Approach for Elastodynamics of the Tricept Robot
,”
ASME J. Mech. Robot.
,
11
(
3
), p.
031005
.
19.
Zhang
,
J.
,
Zhao
,
Y. Q.
, and
Jin
,
Y.
,
2016
, “
Elastodynamic Modeling and Analysis for an Exechon Parallel Kinematic Machine
,”
ASME J. Manuf. Sci. Eng.
,
138
(
3
), p.
031011
.
20.
Liu
,
Q.
, and
Huang
,
T.
,
2019
, “
Inverse Kinematics of a 5-Axis Hybrid Robot With Non-Singular Tool Path Generation
,”
Robot. Comput.-Integr. Manuf.
,
56
, pp.
140
148
.
21.
Liao
,
L.
,
Xi
,
F.
, and
Liu
,
K.
,
2008
, “
Modeling and Control of Automated Polishing/Deburring Process Using a Dual-Purpose Compliant Toolhead
,”
Int. J. Mach. Tools Manuf.
,
48
(
12–13
), pp.
1454
1463
.
22.
Kakinuma
,
Y.
,
Igarashi
,
K.
,
Katsura
,
S.
, and
Aoyama
,
T.
,
2013
, “
Development of 5-Axis Polishing Machine Capable of Simultaneous Trajectory, Posture, and Force Control
,”
CIRP Ann.
,
62
(
1
), pp.
379
382
.
23.
Fajardo-Pruna
,
M.
,
López-Estrada
,
L.
,
Pérez
,
H.
,
Diez
,
E.
, and
Vizán
,
A.
,
2019
, “
Analysis of a Single-Edge Micro Cutting Process in a Hybrid Parallel-Serial Machine Tool
,”
Int. J. Mech. Sci.
,
151
, pp.
222
235
.
24.
Yang
,
X.
,
Zhao
,
J.
,
Zhang
,
L.
,
Li
,
D.
, and
Li
,
R.
,
2009
, “
A Novel Surface Self-Adapting Parallel Machine Tool for Blade Machining
,”
IEEE International Conference on Mechatronics and Automation (ICMA)
,
Changchun, China
,
Aug. 9–12
, pp.
3921
3296
.
25.
Li
,
Y. G.
,
Liu
,
H. T.
,
Zhao
,
X. M.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2010
, “
Design of a 3-DOF PKM Module for Large Structural Component Machining
,”
Mech. Mach. Theory
,
45
(
6
), pp.
941
954
.
26.
Tian
,
W.
,
Yin
,
F.
,
Liu
,
H.
,
Li
,
J.
,
Li
,
Q.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2016
, “
Kinematic Calibration of a 3-DOF Spindle Head Using a Double Ball Bar
,”
Mech. Mach. Theory
,
102
, pp.
167
178
.
27.
Yen
,
P.-L.
,
Wang
,
C.-H.
,
Lin
,
H.-T.
, and
Hung
,
S.-S.
,
2019
, “
Optimization Design for a Compact Redundant Hybrid Parallel Kinematic Machine
,”
Robot. Comput.-Integr. Manuf.
,
58
, pp.
172
180
.
28.
Li
,
Q.
,
Chen
,
Z.
,
Chen
,
Q.
,
Wu
,
C.
, and
Hu
,
X.
,
2011
, “
Parasitic Motion Comparison of 3-PRS Parallel Mechanism With Different Limb Arrangements
,”
Robot. Comput.-Integr. Manuf.
,
27
(
2
), pp.
389
396
.
29.
Lin
,
R.
,
Guo
,
W.
, and
Gao
,
F.
,
2016
, “
On Parasitic Motion of Parallel Mechanisms
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
,
Charlotte, NC
,
Aug. 21–24
, p.
59859
.
30.
Wang
,
G.
,
Wang
,
Y.
,
Zhao
,
J.
, and
Chen
,
G.
,
2012
, “
Process Optimization of the Serial-Parallel Hybrid Polishing Machine Tool Based on Artificial Neural Network and Genetic Algorithm
,”
J. Intell. Manuf.
,
23
(
3
), pp.
365
374
.
31.
Tsai
,
L.-W.
, and
Joshi
,
S.
,
2002
, “
Kinematic Analysis of 3-DOF Position Mechanisms for Use in Hybrid Kinematic Machines
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
245
253
.
32.
Huang
,
T.
,
Zhao
,
D.
,
Yin
,
F.
,
Tian
,
W.
, and
Chetwynd
,
D. G.
,
2019
, “
Kinematic Calibration of a 6-DOF Hybrid Robot by Considering Multicollinearity in the Identification Jacobian
,”
Mech. Mach. Theory
,
131
, pp.
371
384
.
33.
Huang
,
T.
,
Zhao
,
D.
, and
Cao
,
Z.-C.
,
2020
, “
Trajectory Planning of Optical Polishing Based on Optimized Implementation of Dwell Time
,”
Precis. Eng.
,
62
, pp.
223
231
.
34.
Bi
,
Z. M.
, and
Lang
,
S. Y. T.
,
2006
, “
Kinematic and Dynamic Models of a Tripod System With a Passive Leg
,”
IEEE/ASME Trans. Mech.
,
11
(
1
), pp.
108
112
.
35.
Bi
,
Z.
,
Lang
,
S.
,
Zhang
,
D.
,
Orban
,
P.
, and
Verner
,
M.
,
2007
, “
Integrated Design Toolbox for Tripod-Based Parallel Kinematic Machines
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
799
807
.
36.
Li
,
Y.
, and
Xu
,
Q.
,
2008
, “
Stiffness Analysis for a 3-PUU Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
43
(
2
), pp.
186
200
.
37.
Petko
,
M.
,
Karpie
,
G.
,
Gac
,
K.
,
Góra
,
G.
,
Kobus
,
K.
, and
Ochoński
,
J.
,
2016
, “
Trajectory Tracking Controller of the Hybrid Robot for Milling
,”
Mechatronics
,
37
, pp.
100
111
.
38.
Li
,
Y.
, and
Staicu
,
S.
,
2012
, “
Inverse Dynamics of a 3-PRC Parallel Kinematic Machine
,”
Nonlinear Dyn.
,
67
(
2
), pp.
1031
1041
.
39.
Walker
,
D. D.
,
Brooks
,
D.
,
King
,
A.
,
Freeman
,
R.
,
Morton
,
R.
,
McCavana
,
G.
, and
Kim
,
S. W.
,
2003
, “
The “Precessions” Tooling for Polishing and Figuring Flat, Spherical and Aspheric Surfaces
,”
Opt. Express
,
11
(
8
), pp.
958
964
.
40.
Preston
,
F.
,
1927
, “
The Theory and Design of Plate Glass Polishing Machines
,”
J. Glass Technol.
,
11
(44), pp.
214
256
.
41.
Xu
,
P.
,
Cheung
,
C.-F.
,
Li
,
B.
,
Ho
,
L.-T.
, and
Zhang
,
J.-F.
,
2017
, “
Kinematics Analysis of a Hybrid Manipulator for Computer Controlled Ultra-Precision Freeform Polishing
,”
Robot. Comput.-Integr. Manuf.
,
44
, pp.
44
56
.
42.
Xu
,
P.
,
Li
,
B.
,
Cheung
,
C.-F.
, and
Zhang
,
J.-F.
,
2017
, “
Stiffness Modeling and Optimization of a 3-DOF Parallel Robot in a Serial-Parallel Polishing Machine
,”
Int. J. Precis. Eng. Man.
,
18
(
4
), pp.
497
507
.
43.
Xu
,
P.
,
Cheung
,
C. F.
,
Wang
,
C.
, and
Zhao
,
C.
,
2020
, “
Novel Hybrid Robot and Its Processes for Precision Polishing of Freeform Surfaces
,”
Precis. Eng.
,
64
, pp.
53
62
.
44.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
45.
Dastjerdi
,
A. H.
,
Sheikhi
,
M. M.
, and
Masouleh
,
M. T.
,
2020
, “
A Complete Analytical Solution for the Dimensional Synthesis of 3-DOF Delta Parallel Robot for a Prescribed Workspace
,”
Mech. Mach. Theory
,
153
, p.
103991
.
46.
Camacho-Arreguin
,
J.
,
Wang
,
M.
,
Dong
,
X.
, and
Axinte
,
D.
,
2020
, “
A Novel Class of Reconfigurable Parallel Kinematic Manipulators: Concepts and Fourier-Based Singularity Analysis
,”
Mech. Mach. Theory
,
153
, p.
103993
.
47.
Li
,
J.
,
Zuo
,
S.
,
Zhang
,
L.
,
Dong
,
M.
,
Zhang
,
Z.
,
Tao
,
C.
, and
Ji
,
R.
,
2020
, “
Mechanical Design and Performance Analysis of a Novel Parallel Robot for Ankle Rehabilitation
,”
ASME J. Mech. Robot.
,
12
(
5
), p.
051007
.
48.
Liu
,
X.
,
Yao
,
J.
,
Li
,
Q.
, and
Zhao
,
Y.
,
2021
, “
Coordination Dynamics and Model-Based Neural Network Synchronous Controls for Redundantly Full-Actuated Parallel Manipulator
,”
Mech. Mach. Theory
,
160
, p.
104284
.
49.
Xu
,
P.
,
Cheung
,
B. C. F.
, and
Li
,
B.
,
2019
, “
A Complete, Continuous, and Minimal Product of Exponentials-Based Model for Five-Axis Machine Tools Calibration With a Single Laser Tracker, an R-Test, or a Double Ball-Bar
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041010
.
50.
Mei
,
B.
,
Xie
,
F.
,
Liu
,
X.-J.
, and
Yang
,
C.
,
2021
, “
Elasto-Geometrical Error Modeling and Compensation of a Five-Axis Parallel Machining Robot
,”
Precis. Eng.
,
69
, pp.
48
61
.
51.
Shen
,
H.
,
Meng
,
Q.
,
Li
,
J.
,
Deng
,
J.
, and
Wu
,
G.
,
2021
, “
Kinematic Sensitivity, Parameter Identification and Calibration of a Non-Fully Symmetric Parallel Delta Robot
,”
Mech. Mach. Theory
,
161
, p.
104311
.
You do not currently have access to this content.