Abstract

This paper is concerned with the motion of an aquatic robot whose body has the form of a sharp-edged foil. The robot is propelled by rotating the internal rotor without shell deformation. The motion of the robot is described by a finite-dimensional mathematical model derived from physical considerations. This model takes into account the effect of added masses and viscous friction. The parameters of the model are calculated from comparison of experimental data and numerical solution to the equations of rigid body motion and the Navier–Stokes equations. The proposed mathematical model is used to define controls implementing straight-line motion, motion in a circle, and motion along a complex trajectory. Experiments for estimation of the efficiency of the model have been conducted.

References

1.
Chernousko
,
F. L.
,
Bolotnik
,
N. N.
, and
Figurina
,
T. Y.
,
2013
, “
Optimal Control of Vibrationally Excited Locomotion Systems
,”
Regul. Chaotic Dyn.
,
18
(
1–2
), pp.
85
99
.
2.
Fedonyuk
,
V.
, and
Tallapragada
,
P.
,
2020
, “
Locomotion of a Compliant Mechanism With Nonholonomic Constraints
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051006
.
3.
Karavaev
,
Y. L.
,
Kilin
,
A. A.
, and
Klekovkin
,
A. V.
,
2016
, “
Experimental Investigations of the Controlled Motion of a Screwless Underwater Robot
,”
Regul. Chaotic Dyn.
,
21
(
7–8
), pp.
918
926
.
4.
Tallapragada
,
P.
,
2015
, “
A Swimming Robot with An Internal Rotor As a Nonholonomic System
,”
Proceedings of the American Control Conference
,
Chicago, IL
, pp.
657
662
.
5.
Refael
,
G.
, and
Degani
,
A.
,
2019
, “
A Single-Actuated Swimming Robot: Design, Modelling, and Experiments
,”
J. Intell. Rob. Syst.
,
94
(
2
), pp.
471
489
.
6.
Xu
,
J.
, and
Fang
,
H.
,
2019
, “
Improving Performance: Recent Progress on Vibration-Driven Locomotion Systems
,”
Nonlinear Dyn.
,
98
(
4
), pp.
2651
2669
.
7.
Chernousko
,
F. L.
,
2010
, “
Motion of a Body in a Fluid Due to Attached-Link Oscillations
,”
Dokl. Akad. Nauk.
,
431
(
1
), pp.
46
49
.
8.
Chernousko
,
F. L.
,
2011
, “
Optimal Motion of a Multilink System in a Resistive Medium
,”
Tr. Inst. Mat. i Mekh. UrO RAN
,
17
(
2
), pp.
240
255
.
9.
Cochran
,
J.
,
Kanso
,
E.
,
Kelly
,
S. D.
,
Xiong
,
H.
, and
Krstic
,
M.
,
2009
, “
Source Seeking for Two Nonholonomic Models of Fish Locomotion
,”
IEEE Trans. Rob.
,
25
(
5
), pp.
1166
1176
.
10.
Bolotnik
,
N. N.
,
Jatsun
,
S. F.
,
Jatsun
,
A. S.
, and
Cherepanov
,
A. A.
,
2006
, “
Automatically Controlled Vibration-Driven Robots
,”
2006 IEEE International Conference on Mechatronics
,
Budapest, Hungary
, pp.
438
441
.
11.
Childress
,
S.
,
Spagnolie
,
S. E.
, and
Tokieda
,
T.
,
2011
, “
A Bug on a Raft: Recoil Locomotion in a Viscous Fluid
,”
J. Fluid Mech.
,
669
, pp.
527
556
.
12.
Vorochaeva (Volkova)
,
S. F.
, and
Jatsun
,
S. F.
,
2011
, “
Control of the Three-Mass Robot Moving in the Liquid Environment
,”
Rus. J. Nonlin. Dyn.
,
7
(
4
), pp.
845
857
.
13.
Kozlov
,
V. V.
, and
Ramodanov
,
S. M.
,
2001
, “
The Motion of a Variable Body in An Ideal Fluid
,”
J. Appl. Math. Mech.
,
65
(
4
), pp.
579
587
.
14.
Kozlov
,
V. V.
, and
Onishchenko
,
D. A.
,
2003
, “
The Motion in a Perfect Fluid of a Body Containing a Moving Point Mass
,”
J. Appl. Math. Mech.
,
67
(
4
), pp.
553
564
.
15.
Vetchanin
,
E. V.
, and
Kilin
,
A. A.
,
2016
, “
Controlled Motion of a Rigid Body With Internal Mechanisms in An Ideal Incompressible Fluid
,”
Proc. Steklov Inst. Math.
,
295
(
1
), pp.
302
332
.
16.
Klenov
,
A. I.
, and
Kilin
,
A. A.
,
2016
, “
Influence of Vortex Structures on the Controlled Motion of An Above-Water Screwless Robot
,”
Regul. Chaotic Dyn.
,
21
(
7–8
), pp.
927
938
.
17.
Jing
,
F.
, and
Kanso
,
E.
,
2013
, “
Stability of Underwater Periodic Locomotion
,”
Regul. Chaotic Dyn.
,
18
(
4
), pp.
380
393
.
18.
Borisov
,
A. V.
,
Mamaev
,
I. S.
, and
Vetchanin
,
E. V.
,
2018
, “
Self-Propulsion of a Smooth Body in a Viscous Fluid Under Periodic Oscillations of a Rotor and Circulation
,”
Regul. Chaotic Dyn.
,
23
(
7–8
), pp.
850
874
.
19.
Ramodanov
,
S. M.
,
Tenenev
,
V. A.
, and
Treschev
,
D. V.
,
2012
, “
Self-Propulsion of a Body With Rigid Surface and Variable Coefficient of Lift in a Perfect Fluid
,”
Regul. Chaotic Dyn.
,
17
(
6
), pp.
547
558
.
20.
Kanso
,
E.
, and
Oskouei
,
G.
,
2008
, “
Stability of a Coupled Body-Vortex System
,”
J. Fluid Mech.
,
800
, pp.
77
94
.
21.
Ramodanov
,
S. M.
,
2002
, “
Motion of a Circular Cylinder and N Point Vortices in a Perfect Fluid
,”
Regul. Chaotic Dyn.
,
7
(
3
), pp.
291
298
.
22.
Shashikanth
,
B. N.
,
Marsden
,
J. E.
,
Burdick
,
J. W.
, and
Kelly
,
S. D.
,
2002
, “
The Hamiltonian Structure of a Two-Dimensional Rigid Circular Cylinder Interacting Dynamically With N Point Vortices
,”
Phys. Fluids.
,
14
(
3
), pp.
1214
1227
.
23.
Vankerschaver
,
J. E.
,
Kanso
,
E.
, and
Marsden
,
J. E.
,
2009
, “
The Geometry and Dynamics of Interacting Rigid Bodies and Point Vortice
,”
J. Geom. Mech.
,
1
(
2
), pp.
223
266
.
24.
Kochin
,
N. E.
,
Kibel
,
I. A.
, and
Roze
,
N. V.
,
1964
,
Theoretical Hydrodynamics
,
Wiley
,
New York
.
25.
Chaplygin
,
S. A.
,
1956
,
The Selected Works on Wing Theory of Sergei A. Chaplygin
,
Garbell Research Foundation
, pp.
1
16
.
26.
Kutta
,
W. M.
,
1902
, “
Auftriebskräfte in Strömenden Flüssigkeiten
,”
Illustr. Aeronaut. Mitteilungen
,
6
(
133
), pp.
133
135
.
27.
Michelin
,
S.
, and
Smith
,
S. G. L.
,
2009
, “
An Unsteady Point Vortex Method for Coupled Fluid-Solid Problems
,”
Theor. Comput. Fluid Dyn.
,
23
(
2
), pp.
127
153
.
28.
Tallapragada
,
P.
, and
Kelly
,
S. D.
,
2015
, “
Self-Propulsion of Free Solid Bodies With Internal Rotors Via Localized Singular Vortex Shedding in Planar Ideal Fluids
,”
Eur. Phys. J. Spec. Top.
,
224
(
17
), pp.
3185
3197
.
29.
Kelly
,
S. D.
, and
Xiong
,
H.
,
2010
, “
Self-propulsion of a Free Hydrofoil With Localized Discrete Vortex Shedding: Analytical Modeling and Simulation
,”
Theor. Comput. Fluid Dyn.
,
24
(
1
), pp.
45
50
.
30.
Mason
,
R. J.
,
2003
, “
Fluid Locomotion and Trajectory Planning for Shape-Changing Robots
,”
Ph.D. Thesis
,
California Institute of Technology, Pasadena, CA.
, p.
264
.
31.
Pollard
,
B.
, and
Tallapragada
,
P.
,
2019
, “
Passive Appendages Improve the Maneuverability of Fishlike Robots
,”
IEEE/ASME Trans. Mechatron.
,
24
(
4
), pp.
1586
1596
.
32.
Mamaev
,
I. S.
, and
Vetchanin
,
E. V.
,
2018
, “
The Self-Propulsion of a Foil With a Sharp Edge in a Viscous Fluid Under the Action of a Periodically Oscillating Rotor
,”
Regul. Chaotic Dyn.
,
23
(
7–8
), pp.
875
886
.
33.
Mamaev
,
I. S.
,
Tenenev
,
V. A.
, and
Vetchanin
,
E. V.
,
2018
, “
Dynamics of a Body With a Sharp Edge in a Viscous Fluid
,”
Russ. J. Nonlinear Dyn.
,
14
(
4
), pp.
473
494
.
34.
Kilin
,
A. A.
,
Klenov
,
A. I.
, and
Tenenev
,
V. A.
,
2018
, “
Controlling the Movement of the Body Using Internal Masses in a Viscous Liquid
,”
Comput. Res. Model.
,
10
(
4
), pp.
445
460
.
35.
Brendelev
,
V. N.
,
1981
, “
On the Realization of Constraints in Nonholonomic Mechanics
,”
J. Appl. Math. Mech.
,
45
(
3
), pp.
351
355
.
36.
Kozlov
,
V. V.
,
1983
, “
Realization of Nonintegrable Constraints in Classical Mechanics
,”
Sov. Phys. Dokl.
,
28
, pp.
735
737
.
37.
Bizyaev
,
I. A.
,
Borisov
,
A. V.
, and
Mamaev
,
I. S.
,
2019
, “
Dynamics of a Chaplygin Sleigh With An Unbalanced Rotor: Regular and Chaotic Motions
,”
Nonlinear Dyn.
,
98
(
3
), pp.
2277
2291
.
38.
Fedorov
,
Y. N.
, and
García-Naranjo
,
L. C.
,
2010
, “
The Hydrodynamic Chaplygin Sleigh
,”
J. Phys. A
,
43
(
43
), p.
434013
.
39.
Eldredge
,
J. D.
,
2006
, “
Numerical Simulations of Undulatory Swimming At Moderate Reynolds Number
,”
Bioinspir. Biomim.
,
1
(
4
), pp.
S19
S24
.
40.
Vetchanin
,
E. V.
,
Mamaev
,
I. S.
, and
Tenenev
,
V. A.
,
2013
, “
The Self-Propulsion of a Body With Moving Internal Masses in a Viscous Fluid
,”
Regul. Chaotic Dyn.
,
18
(
1–2
), pp.
100
117
.
41.
Pollard
,
B.
, and
Tallapragada
,
P.
,
2016
, “
An Aquatic Robot Propelled by An Internal Rotor
,”
IEEE/ASME Trans. Mechatron.
,
22
(
2
), pp.
931
939
.
42.
Kirchhoff
,
G. R.
,
1869
, “
Über Die Bewegung Eines Rotationskörpers in Einer Flüssigkeit
,”
J. für Math.
,
71
, pp.
223
273
.
43.
Borisov
,
A. V.
, and
Mamaev
,
I. S.
,
2006
, “
On the Motion of a Heavy Rigid Body in An Ideal Fluid With Circulation
,”
Chaos
,
16
(
1
), p.
013118
.
44.
Chaplygin
,
S. A.
,
1956
,
The Selected Works on Wing Theory of Sergei A. Chaplygin
,
Garbell Research Foundation
, pp.
42
72
.
45.
Schlichting
,
H.
,
1960
,
Boundary Layer Theory
,
McGraw-Hill
,
New York
.
46.
Gorry
,
P. A.
,
1990
, “
General Least-Squares Smoothing and Differentiation by the Convolution (savitzky-golay) Method
,”
Anal. Chem.
,
62
(
6
), pp.
570
573
.
47.
Borisov
,
A. V.
,
Kuznetsov
,
S. P.
,
Mamaev
,
I. S.
, and
Tenenev
,
V. A.
,
2016
, “
Describing the Motion of a Body With An Elliptical Cross Section in a Viscous Uncompressible Fluid by Model Equations Reconstructed From Data Processing
,”
Tech. Phys. Lett.
,
42
(
9
), pp.
886
890
.
48.
Hromadka
,
T. V.
, and
Lai
,
C.
,
2012
,
The Complex Variable Boundary Element Method in Engineering Analysis
,
Springer Science & Business Media
.
49.
Korotkin
,
A. I.
,
2009
,
Added Masses of Ship Structures
,
Springer
,
Dordrecht
.
You do not currently have access to this content.