Abstract

This paper deals with the structure synthesis and reconfiguration analysis of variable-DOF (variable-degree-of-freedom) single-loop mechanisms with prismatic joints based on a unified tool—the dual quaternion. According to motion polynomials over dual quaternions, an algebraic method is presented to synthesize variable-DOF single-loop 5R2P mechanisms (R and P denote revolute and prismatic joints, respectively), which are composed of the Bennett and RPRP mechanisms. Using this approach, variable-DOF single-loop RRPRPRR and RRPRRPR mechanisms are constructed by joints obtained from the factorization of motion polynomials. Then reconfiguration analysis of these variable-DOF single-loop mechanisms is performed in light of the kinematic mapping based on dual quaternions as well as the prime decomposition. The results show that the variable-DOF 5R2P mechanisms have a 1DOF spatial 5P2P motion mode and a 2DOF Bennett-RPRP motion mode. Furthermore, the variable-DOF 5R2P mechanisms have two transition configurations, from which the mechanisms can switch among their two motion modes.

References

1.
Kong
,
X.
,
2018
, “
A Variable-DOF Single-Loop 7R Spatial Mechanism with Five Motion Modes
,”
Mech. Mach. Theory
,
120
, pp.
239
249
.
2.
Carbonari
,
L.
,
Callegari
,
M.
,
Palmieri
,
G.
, and
Palpacelli
,
M. C.
,
2014
, “
A New Class of Reconfigurable Parallel Kinematic Machines
,”
Mech. Mach. Theory
,
79
, pp.
173
183
.
3.
Kiper
,
G.
, and
Soylemez
,
E.
,
2011
, “
Modified Wren Platforms
,”
13th World Congress in Mechanism and Machine Science
,
Guanajuato, Mexico
, Paper No. IMD-123.
4.
He
,
C.
,
Wang
,
S.
, and
Wang
,
X.
,
2012
, “Design and Analysis of a Portable Reconfigurable Minimally Invasive Surgical Robot,”
Advance in Reconfigurable Mechanisms and Robots I
,
J. S.
Dai
,
M.
Zoppi
, and
X.
Kong
, eds.,
Springer
,
London
, pp.
465
476
.
5.
Wohlhart
,
K.
,
1996
, “Kinematotropic Linkages,”
Recent Advances in Robot Kinematics
,
J.
Lenarcic
, and
V.
Parenti-Castelli
, eds.,
Kluwer Academic
,
Dordrecht, The Netherlands
, pp.
359
368
.
6.
Fanghella
,
P.
,
Galleti
,
C.
, and
Gianotti
,
E.
,
2006
, “Parallel Robots That Change Their Group of Motion,”
Advances in Robot Kinematics
,
Springer
,
Dordrecht, The Netherlands
, pp.
49
56
.
7.
Kong
,
X.
,
2012
, “
Type Synthesis of Variable Degree-of-Freedom Parallel Manipulators with Both Planar and 3T1R Operation Modes
,” ASME Paper No. DETC2012-70621.
8.
Zeng
,
Q.
,
Ehmann
,
K. F.
, and
Cao
,
J.
,
2016
, “
Design of General Kinematotropic Mechanisms
,”
Rob. Comput. Integr. Manuf.
,
38
, pp.
67
81
.
9.
Nurahmi
,
L.
,
Caro
,
S.
,
Wenger
,
P.
,
Schadlbauer
,
J.
, and
Husty
,
M.
,
2016
, “
Reconfiguration Analysis of a 4-RUU Parallel Manipulator
,”
Mech. Mach. Theory
,
96
, pp.
269
289
.
10.
Coste
,
M.
, and
Demdah
,
K. M.
,
2015
, “
Extra Modes of Operation and Self Motions in Manipulators Designed for Schoenflies Motion
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041020
.
11.
Liu
,
K.
,
Kong
,
X.
, and
Yu
,
J.
,
2019
, “
Operation Mode Analysis of Lower-Mobility Parallel Mechanisms Based on Dual Quaternions
,”
Mech. Mach. Theory
,
142
, p.
103577
.
12.
Zhang
,
K.
, and
Dai
,
J. S.
,
2015
, “
Screw-System-Variation Enabled Reconfiguration of the Bennett Plano-Spherical Hybrid Linkage and Its Evolved Parallel Mechanism
,”
ASME J. Mech. Des.
,
137
(
6
), p.
062303
.
13.
Zhang
,
K.
, and
Dai
,
J. S.
,
2016
, “
Geometric Constraints and Motion Branch Variation for Reconfiguration of Single-Loop Linkages With Mobility One
,”
Mech. Mach. Theory
,
106
, pp.
16
29
.
14.
Galletti
,
C.
, and
Fanghella
,
P.
,
2001
, “
Single-Loop Kinematotropic Mechanisms
,”
Mech. Mach. Theory
,
36
(
6
), pp.
743
761
.
15.
Kong
,
X.
, and
Pfurner
,
M.
,
2015
, “
Type Synthesis and Reconfiguration Analysis of a Class of Variable-DOF Single-Loop Mechanisms
,”
Mech. Mach. Theory
,
85
, pp.
116
128
.
16.
Song
,
Y.
,
Ma
,
X.
, and
Dai
,
J. S.
,
2019
, “
A Novel 6R Metamorphic Mechanism with Eight Motion Branches and Multiple Furcation Points
,”
Mech. Mach. Theory
,
142
, p.
103598
.
17.
He
,
X.
,
Kong
,
X.
,
Chablat
,
D.
,
Caro
,
S.
, and
Hao
,
G.
,
2014
, “
Kinematic Analysis of a Single-Loop Reconfigurable 7R Mechanism With Multiple Operation Modes
,”
Robotica
,
32
(
7
), pp.
1171
1188
.
18.
Lopez-Custodio
,
P. C.
,
Rico
,
J. M.
,
Cervantes-Sanchez
,
J. J.
, and
Perez-Soto
,
G. L.
,
2016
, “
Reconfigurable Mechanisms From the Intersection of Surfaces
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021029
.
19.
Kong
,
X.
, and
Huang
,
C.
,
2009
, “
Type Synthesis of Single-DOF Single-Loop Mechanisms with Two Operation Modes
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
,
London, UK
,
June 22–24
, pp.
136
141
.
20.
Hsu
,
K. L.
, and
Ting
,
K. L.
,
2018
, “
Overconstrained Mechanisms Derived From RPRP Loops
,”
ASME J. Mech. Des.
,
140
(
6
), p.
062301
.
21.
Pfurner
,
M.
, and
Kong
,
X.
,
2016
, “Algebraic Analysis of a New Variable-DOF 7R Mechanism,”
New Trends in Mechanism and Machine Science
,
P.
Wenger
, and
P.
Flores
, eds.,
Theory and Industrial Applications, Springer
,
Cham
, pp.
71
79
.
22.
Wang
,
J.
,
Bai
,
G.
, and
Kong
,
X.
,
2017
, “Single-Loop Foldable 8R Mechanisms with Multiple Modes,”
New Trends in Mechanism and Machine Science
,
P.
Wenger
, and
P.
Flores
, eds.,
Springer
,
Cham
, pp.
503
510
.
23.
Chai
,
X.
,
Zhang
,
C.
, and
Dai
,
J. S.
,
2018
, “
A Single-Loop 8R Linkage With Plane Symmetry and Bifurcation Property
,”
International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Netherlands
,
June 20–22
, pp.
1
8
.
24.
Lee
,
C. C.
, and
Hervé
,
J. M.
,
2004
, “
Synthesis of Two Kinds of Discontinuously Movable Spatial 7R Mechanisms Through the Group Algebraic Structure of Displacement Set
,”
Proceedings of 11th IFToMM World Congress in Mechanism and Machine Science
,
Tianjin, IFToMM
,
Apr. 1–4
, pp.
197
201
.
25.
Huang
,
C.
,
Tseng
,
R.
, and
Kong
,
X.
,
2010
, “Design and Kinematic Analysis of a Multiple-Mode 5R2P Closed-Loop Linkage,”
New Trends in Mechanism Science
,
D.
Pisla
,
M.
Ceccarelli
,
M.
Husty
, and
B.
Corves
, eds.,
Springer
,
Dordrecht
, pp.
3
10
.
26.
Song
,
C. Y.
, and
Chen
,
Y.
,
2012
, “
Multiple Linkage Forms and Bifurcation Behaviours of the Double-Dubtractive-Goldberg 6R Linkage
,”
Mech. Mach. Theory
,
57
, pp.
95
110
.
27.
Pfurner
,
M.
,
2018
, “
Synthesis and Motion Analysis of a Single-Loop 8R-Chain
,”
2018 International Conference on Reconfigurable Mechanisms and Robots
,
Delft, Netherlands
, pp.
1
7
.
28.
Kong
,
X.
,
2017
, “
Reconfiguration Analysis of Multimode Single-Loop Spatial Mechanisms Using Dual Quaternions
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051002
.
29.
Liu
,
K.
,
Yu
,
J.
, and
Kong
,
X.
,
2021
, “
Synthesis of Multi-Mode Single-Loop Bennett-Based Mechanisms Using Factorization of Motion Polynomials
,”
Mech. Mach. Theory
,
155
, p.
104110
.
30.
Gallet
,
M.
,
Koutschan
,
C.
,
Li
,
Z.
,
Regensburger
,
G.
,
Schicho
,
J.
, and
Villamizar
,
N.
,
2017
, “
Planar Linkages Following a Prescribed Motion
,”
Math. Comput.
,
86
(
303
), pp.
473
506
.
31.
Li
,
Z.
,
Schicho
,
J. J.
, and
Schrӧcker
,
H. P.
,
2018
, “
Kempe’s Universality Theorem for Ration Space Curves
,”
Found. Comput. Math.
,
18
(
2
), pp.
509
536
.
32.
Li
,
Z.
,
Scharler
,
D. F.
, and
Schröcker
,
H. P.
,
2019
, “
Factorization Results for Left Polynomials in Some Associative Real Algebras: State of the Art, Applications, and Open
,”
J. Comput. Appl. Math.
,
349
, pp.
508
522
.
33.
Zhang
,
K.
, and
Dai
,
J. S.
,
2016
, “
Reconfiguration of the Plane-Symmetric Double-Spherical 6R Linkage with Bifurcation and Trifurcation
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
230
(
3
), pp.
473
482
.
34.
Feng
,
H.
,
Chen
,
Y.
,
Dai
,
J. S.
, and
Gogu
,
G.
,
2017
, “
Kinematic Study of the General Plane-Symmetric Bricard Linkage and Its Bifurcation Variations
,”
Mech. Mach. Theory
,
116
, pp.
89
104
.
35.
Pfurner
,
M.
,
Kong
,
X.
, and
Huang
,
C.
,
2014
, “
Complete Kinematic Analysis of Single-Loop Multiple-Mode 7-Link Mechanisms Based on Bennett and Overconstrained RPRP Mechanisms
,”
Mech. Mach. Theory
,
73
, pp.
117
129
.
36.
Selig
,
J. M.
,
2005
,
Geometric Fundamentals of Robotics
,
Springer
,
New York
.
37.
McCarthy
,
J. M.
,
2000
,
Geometric Design of Linkages
,
Springer-Verlag
,
New York
.
38.
Thomas
,
F.
,
2014
, “
Approaching Dual Quaternions From Matrix Algebra
,”
IEEE Trans. Rob.
,
30
(
5
), pp.
1037
1048
.
39.
Husty
,
M. L.
,
Pfurner
,
M.
, and
Schröcker
,
H. P.
,
2007
, “
A New and Efficient Algorithm for the Inverse Kinematics of a General Serial 6R Manipulator
,”
Mech. Mach. Theory
,
42
(
1
), pp.
66
81
.
40.
Husty
,
M. L.
,
Pfurner
,
M.
,
Schröcker
,
H. P.
, and
Brunnthaler
,
K.
,
2007
, “
Algebraic Methods in Mechanism Analysis and Synthesis
,”
Robotica
,
25
(
6
), pp.
661
675
.
41.
Selig
,
J. M.
, and
Husty
,
M.
,
2011
, “
Half-turns and Line Symmetric Motions
,”
Mech. Mach. Theory
,
46
(
2
), pp.
156
167
.
42.
Schadlbauer
,
J.
,
Walter
,
D. R.
, and
Husty
,
M. L.
,
2014
, “
The 3-RPS Parallel Manipulator From an Algebraic Viewpoint
,”
Mech. Mach. Theory
,
75
, pp.
161
176
.
43.
Hegedüs
,
G.
,
Schicho
,
J.
, and
Schröcker
,
H. P.
,
2013
, “
Factorization of Rational Curves in the Study Quadric
,”
Mech. Mach. Theory
,
69
, pp.
142
152
.
44.
Li
,
Z.
,
Schicho
,
J.
, and
Schröcker
,
H. P.
,
2019
, “
Factorization of Motion Polynomials
,”
J. Symb. Comput.
,
74
, pp.
400
407
.
45.
Li
,
Z.
,
Schicho
,
J.
, and
Schröcker
,
H. P.
,
2016
, “
The Rational Motion of Minimal Dual Quaternion Degree With Prescribed Trajectory
,”
Comput. Aided Geom. Des.
,
41
, pp.
1
9
.
46.
Huang
,
C.
, and
Tu
,
H. T.
,
2005
, “
Linear Property of the Screw Surface of the Spatial RPRP Linkage
,”
ASME J. Mech. Des.
,
128
(
3
), pp.
581
586
.
You do not currently have access to this content.