Abstract

Concrete additive manufacturing (AM) is a growing field of research. However, on-site, large-scale concrete additive manufacturing requires motion platforms that are difficult to implement with conventional rigid-link robotic systems. This article presents a new kinematic arrangement for a deployable cable-driven robot intended for on-site AM. The kinematics of this robot are examined to determine if they meet the requirements for this application, the wrench feasible workspace (WFW) is examined, and the physical implementation of a prototype is also presented. Data collected from the physical implementation of the proposed system are analyzed, and the results support its suitability for the intended application. The success of this system demonstrates that this kinematic arrangement is promising for future deployable AM systems.

References

1.
Buswell
,
R.
,
Leal de Silva
,
W.
,
Jones
,
S.
, and
Dirrenberger
,
J.
,
2018
, “
3D Printing Using Concrete Extrusion: A Roadmap for Research
,”
Cem. Concr. Res.
,
112
(
1
), pp.
37
49
.
2.
Bos
,
F.
,
Wolfs
,
R.
,
Ahmed
,
Z.
, and
Salet
,
T.
,
2016
, “
Additive Manufacturing of Concrete in Construction: Potentials and Challenges of 3D Concrete Printing
,”
Virtual Phys. Prototyp.
,
11
(
3
), pp.
209
225
.
3.
Biernacki
,
J. J.
,
Bullard
,
J. W.
,
Sant
,
G.
,
Brown
,
K.
,
Glasser
,
F. P.
,
Jones
,
S.
,
Ley
,
T.
,
Livingston
,
R.
,
Nicoleau
,
L.
,
Olek
,
J.
, and
Sanchez
,
F.
,
2017
, “
Cements in the 21st Century: Challenges, Perspectives, and Opprotunities
,”
J. Am. Ceram. Soc.
,
100
(
7
), pp.
2745
2773
.
4.
Chesser
,
P.
,
Post
,
B. K.
,
Roschli
,
A. C.
,
Lind
,
R. F.
,
Boulger
,
A. M.
,
Love
,
L. J.
, and
Gaul
,
K. T.
,
2018
, “
Fieldable Platform for Large-Scale Deposition of Concrete Structures
,”
Solid Freeform Fabrication
,
Austin, TX
,
Aug. 13–15
, pp.
2020
2032
.
5.
Bosscher
,
P.
,
William II
,
R.
,
Bryson
,
L. S.
, and
Castro-Lacouture
,
D.
,
2008
, “
Cable-Suspended Robtic Contour Crafting System
,”
Autom. Constr.
,
17
(
4
), pp.
45
55
.
6.
Barnett
,
E.
, and
Gosselin
,
C.
,
2015
, “
Large-Scale 3D Printing With a Cable-Suspended Robot
,”
Addit. Manuf.
,
7
(
1
), pp.
27
44
.
7.
Gosselin
,
C.
,
2014
, “
Cable-Driven Parallel Mechanisms: State of the Art and Perspectives
,”
Mecha. Eng. Rev.
,
1
(
1
), p.
DSM0004
.
8.
Qian
,
S.
,
Zi
,
B.
,
Shang
,
W.-W.
, and
Xu
,
Q.-S.
,
2018
, “
A Review on Cable-Driven Parallel Robots
,”
Chinese J. Mech. Eng.
,
31
(
1
), pp.
1
11
.
9.
Williams
,
R. L.
,
Xin
,
M.
, and
Bosscher
,
P.
,
2008
, “
Contour-Crafting-Cartesian-Cable Robot System Concepts: Workspace and Stiffness Comparisons
,”
Proceedings of the ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 2: 32nd Mechanisms and Robotics Conference, Parts A and B
,
Brooklyn, NY
,
Aug. 3–6
, pp.
31
38
.
10.
McFarlane
,
J.
,
2008
,
ORNL Laboratory Directed Research and Development Program FY 2008 Annual Report
,
Oak Ridge National Laboratory
,
Oak Ridge, TN
, pp.
22
23
.
11.
Khoshnevis
,
B.
, and
Dutton
,
R.
,
1998
, “
Innovative Rapid Prototyping Process Makes Large Sized, Smooth Surfaced Complex Shapes in a Wide Variety of Materials
,”
Mater. Technol.
,
13
(
2
), pp.
53
56
.
12.
Khoshnevis
,
B.
,
Hwang
,
D.
,
Yao
,
K.-T.
, and
Yeh
,
Z.
,
2006
, “
Mega-Scale Fabrication by Contour Crafting
,”
Int. J. Ind. Syst. Eng.
,
1
(
3
), pp.
301
320
.
13.
Roman
,
M. C.
,
Eberly
,
E. A.
,
Mueller
,
R. P.
, and
Deutsch
,
S.
,
2016
, “NASA Centennial Challenge: Three Dimensional (3d) Printed Habitat,”
Earth and Space 2016: Engineering for Extreme Environments
,
R. B.
Malla
,
J. H.
Agui
, and
P. J.
van Susante
, eds.,
American Society of Civil Engineers
,
Reston, VA
, pp.
333
342
.
14.
Jagoda
,
J.
,
Diggs-McGee
,
B.
,
Kreiger
,
M.
, and
Schuldt
,
S.
,
2020
, “
The Viability and Simplicity of 3d-Printed Construction: A Military Case Study
,”
Infrastructures
,
5
(
4
), pp.
35
45
.
15.
Freire
,
T.
,
Brun
,
F.
,
Mateus
,
A.
, and
Gaspar
,
F.
,
2021
, “3d Printing Technology in the Construction Industry,”
Sustainability and Automation in Smart Constructions
,
H.
Rodrigues
,
F.
Gaspar
,
A.
Fernandes
, and
P.
Mateus
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
157
167
.
16.
Rehman
,
A. U.
, and
Sglavo
,
V. M.
,
2020
, “
3d Printing of Geopolymer-Based Concrete for Building Applications
,”
Rapid. Prototyp. J
.,
26
(
10
), pp.
1783
1788
.
17.
Bostelman
,
R.
,
Albus
,
J.
,
Dagalakis
,
N.
, and
Jacoff
,
A.
,
1996
, “
Robocrane Project: An Advanced Concept for Large Scale Manufacturing
,”
Proceedings of the AUVSI Conference
,
Orlando, FL
,
July 1
, pp.
509
522
.
18.
Cone
,
L. L.
,
1985
, “
Skycam—An Aerial Robotic Camera System
,”
Byte
,
10
(
10
), p.
122
.
19.
Thompson
,
R. R.
, and
Blackstone
,
M. S.
,
2005
, “
Three-Dimensional Moving Camera Assembly With an Informational Cover Housing
,” US Patent No. 6,873,355.
20.
Li
,
H.
,
Nan
,
R.
,
Kärcher
,
H. J.
,
Zhu
,
W.
,
Sun
,
J.
,
Lazanowski
,
M.
,
Kern
,
S.
,
Strah
,
B.
,
Wamba
,
F. F.
, and
Jin
,
C.
,
2008
, “
Working Space Analysis and Optimization of the Main Positioning System of Fast Cabin Suspension
,”
Proc. SPIE 7012, Ground-Based and Airborne Telescopes II
,
Marseille, France
,
July 10
, p.
70120T
.
21.
Nan
,
R.
,
Li
,
D.
,
Jin
,
C.
,
Wang
,
Q.
,
Zhu
,
L.
,
Zhu
,
W.
,
Zhang
,
H.
,
Yue
,
Y.
, and
Qian
,
L.
,
2011
, “
Five-Hundred Meter Aperture Spherical Radio Telescope (Fast) Project
,”
Int. J. Mod. Phys. D
,
20
(
6
), pp.
989
1024
.
22.
Vukorep
,
I.
,
2017
, “
Autonomous Big-Scale Additive Manufacturing Using Cable-Driven Robots
,”
ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction
,
34
,
IAARC Publications
.
23.
Tho
,
T. P.
, and
Thinh
,
N. T.
,
2021
, “
Using a Cable-Driven Parallel Robot With Applications in 3d Concrete Printing
,”
Appl. Sci.
,
11
(
2
), p.
563
.
24.
Bruckmann
,
T.
,
Spengler
,
A. J.
,
Karl
,
C. K.
,
Reichert
,
C.
, and
König
,
M.
,
2018
, “Process Analysis of Cable-Driven Parallel Robots for Automated Construction,”
Mechatronics for Cultural Heritage and Civil Engineering
, Vol.
92
,
E.
Ottaviano
,
A.
Pelliccio
, and
V.
Gattulli
, eds.,
Springer
,
Cham, Switzerland
, pp.
63
83
.
25.
Gagliardini
,
L.
,
Gouttefarde
,
M.
, and
Caro
,
S.
,
2018
, “Design of Reconfigurable Cable-Driven Parallel Robots,”
Mechatronics for Cultural Heritage and Civil Engineering
, Vol.
92
,
E.
Ottaviano
,
A.
Pelliccio
, and
V.
Gattulli
, eds.,
Springer
,
Cham, Switzerland
, pp.
85
113
.
26.
Tan
,
H.
,
Nurahmi
,
L.
,
Pramujati
,
B.
, and
Caro
,
S.
,
2020
, “
On the Reconfiguration of Cable-Driven Parallel Robots With Multiple Mobile Cranes
,”
5th International Conference on Robotics and Automation Engineering (ICRAE)
,
Singapore
,
Nov. 20–22
, IEEE, pp.
126
130
.
27.
Oh
,
S.-R.
, and
Agrawal
,
S.
,
2005
, “
Cable Suspended Planar Robots With Redundant Cables: Controllers With Positive Tension
,”
IEEE Trans. Robot.
,
21
(
3
), pp.
457
465
.
28.
Alikhani
,
A.
,
Behzadipour
,
S.
,
Vanini
,
S. A. S.
, and
Alasty
,
A.
,
2009
, “
Workspace Analysis of a Three Dof Cable-Driven Mechanism
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041005
.
29.
Vu
,
D.-S.
,
Barnett
,
E.
, and
Gosselin
,
C.
,
2019
, “
Experimental Validation of a Three-Degree-of-Freedom Cable-Suspended Parallel Robot for Spatial Translation With Constant Orientation
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
024502
.
30.
Liu
,
H.
,
Gosselin
,
C.
, and
Laliberté
,
T.
,
2012
, “
Conceptual Design and Static Analysis of Novel Planar Spring-Loaded Cable-Loop-Driven Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021001
.
31.
Liu
,
H.
,
Gosselin
,
C.
, and
Laliberté
,
T.
,
2014
, “
Two-Degree-of-Freedom Decoupled Nonredundant Cable-Loop-Driven Parallel Mechanism
,”
ASME J. Mech. Rob.
,
6
(
1
), p.
014501
.
32.
Bottema
,
O.
,
1951
, “
On Grubler’s Formulae for Mechanisms
,”
Appl. Sci. Res.
,
2
(
162
), pp.
162
164
.
33.
Behzadipour
,
S.
, and
Khjapour
,
A.
,
2006
, “
Stiffness of Cable-Based Parallel Manipulators With Application to Stability Ayalysis
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
303
310
.
34.
Roberts
,
R.
,
Graham
,
T.
, and
Lippitt
,
T.
,
1998
, “
On the Inverse Kinematics, Statics, And Fault Tolerance of Cable-Suspended Robots
,”
J. Robot. Syst.
,
15
(
10
), pp.
581
597
.
35.
Fabritius
,
M.
,
Martin
,
C.
, and
Pott
,
A.
,
2019
, “Calculation of the Cable-Platform Collision-Free Total Orientation Workspace of Cable-Driven Parallel Robots,”
Cable-Driven Parallel Robots. CableCon 2019
, Vol.
74
,
A.
Pott
, and
T.
Bruckmann
, eds.,
Springer
,
Cham, Switzerland
.
36.
Chesser
,
P.
,
Post
,
B.
,
Lind
,
R.
,
Roschli
,
A.
,
Atkins
,
C.
,
Boulger
,
A.
,
Mhatre
,
P.
, and
Lloyd
,
P.
,
2019
, “
Skybaam Large-Scale Fieldable Deposition Platform System Architecture
,”
Solid Freeform Fabrication
,
Austin, TX
,
Aug. 12–14
, pp.
1558
1567
.
37.
Atkins
,
C.
,
Betters
,
E.
,
Boulger
,
A.
,
Chesser
,
P.
,
Heineman
,
J.
,
Hun
,
D.
,
Lapsa
,
M.
,
Loy
,
A.
,
Roschli
,
A.
,
Vaughan
,
J.
, and
Wang
,
P.
,
2020
, “
Construction-Scale Concrete Additive Manufacturing and Its Application in Infrastructure Energy Storage
,”
Proceedings of the ASME 2020 International Mechanichal Engineering Congress and Exposition
,
Portland, OR
,
Nov. 16
.
You do not currently have access to this content.