Abstract

The paper describes a kinematic method for robotic in-hand manipulation of objects. The method focuses on repositioning the object using a combination of sticking and sliding robotic contacts. Two fingertips with sliding contacts are fixed in space while the remaining two fingertips actively manipulate the object without a change in the point of contact with the object. When sliding over two fixed contacts, the object is constrained to a “three-parameter twist space” if it is not programmed to rotate about the line joining the two fixed contacts. A gradient-descent-based kinematic algorithm is developed to project the desired twist to the allowable twist space, generating a movement sequence of robotic fingertips. The transition from fixed support vis-á-vis the sticking contacts for manipulating the object also emerges from the algorithm.

References

1.
Jacobsen
,
S.
,
Iversen
,
E.
,
Knutti
,
D.
,
Johnson
,
R.
, and
Biggers
,
K.
,
1986
, “
Design of the Utah/MIT Dextrous Hand
,”
Proceedings. 1986 IEEE International Conference on Robotics and Automation, Vol. 3
,
San Francisco, CA
, IEEE, pp.
1520
1532
.
2.
Loucks
,
C.
,
Johnson
,
V.
,
Boissiere
,
P.
,
Starr
,
G.
, and
Steele
,
J.
,
1987
, “
Modeling and Control of the Stanford/JPL Hand
,”
Proceedings. 1987 IEEE International Conference on Robotics and Automation, Vol. 4
,
Raleigh, NC
, IEEE, pp.
573
578
.
3.
Bekey
,
G. A.
,
Tomovic
,
R.
, and
Zeljkovic
,
I.
,
1990
, “
Control Architecture for the Belgrade/usc Hand
,”
Dextrous Robot Hands
,
S. T.
Venkataraman
, and
T.
Iberall
, eds.,
Springer,
Berlin
, pp.
136
149
.
4.
Crisman
,
J. D.
,
Kanojia
,
C.
, and
Zeid
,
I.
,
1996
, “
Graspar: A Flexible, Easily Controllable Robotic Hand
,”
IEEE Robot. Autom. Mag.
,
3
(
2
), pp.
32
38
.
5.
Lee
,
D.-H.
,
Park
,
J.-H.
,
Park
,
S.-W.
,
Baeg
,
M.-H.
, and
Bae
,
J.-H.
,
2016
, “
Kitech-Hand: A Highly Dexterous and Modularized Robotic Hand
,”
IEEE/ASME Trans. Mechatron.
,
22
(
2
), pp.
876
887
.
6.
Devine
,
S.
,
Rafferty
,
K.
, and
Ferguson
,
S.
,
2016
, “
Real Time Robotic Arm Control Using Hand Gestures With Multiple End Effectors
,”
2016 UKACC 11th International Conference on Control (CONTROL)
,
Belfast, UK
, IEEE, pp.
1
5
.
7.
8.
Yang
,
H.
,
Wei
,
G.
,
Ren
,
L.
,
Qian
,
Z.
,
Wang
,
K.
,
Xiu
,
H.
, and
Liang
,
W.
,
2021
, “
A Low-Cost Linkage-Spring-Sendon-Integrated Compliant Anthropomorphic Robotic Hand: Mcr-hand III
,”
Mech. Mach. Theory.
,
158
, p.
104210
.
9.
Wei
,
G.
,
Dai
,
J. S.
,
Wang
,
S.
, and
Luo
,
H.
,
2011
, “
Kinematic Analysis and Prototype of a Metamorphic Anthropomorphic Hand With a Reconfigurable Palm
,”
Int. J. Humanoid Robot.
,
8
(
03
), pp.
459
479
.
10.
Piazza
,
C.
,
Grioli
,
G.
,
Catalano
,
M.
, and
Bicchi
,
A.
,
2019
, “
A Century of Robotic Hands
,”
Ann. Rev. Control, Robot. Autonom. Syst.
,
2
(
1
), pp.
1
32
.
11.
Ma
,
R. R.
,
Rojas
,
N.
, and
Dollar
,
A. M.
,
2016
, “
Spherical Hands: Toward Underactuated, In-hand Manipulation Invariant to Object Size and Grasp Location
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061021
.
12.
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2014
, “
Linkage-based Analysis and Optimization of An Underactuated Planar Manipulator for In-hand Manipulation
,”
ASME J. Mech. Rob.
,
6
(
1
), p.
011002
.
13.
Ospina
,
D.
, and
Ramirez-Serrano
,
A.
,
2020
, “
Sensorless In-hand Manipulation by an Underactuated Robot Hand
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051009
.
14.
Govindan
,
N.
, and
Thondiyath
,
A.
,
2019
, “
Design and Analysis of a Multimodal Grasper Having Shape Conformity and Within-hand Manipulation With Adjustable Contact Forces
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051012
.
15.
Rojas
,
N.
,
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2016
, “
The Gr2 Gripper: An Underactuated Hand for Open-loop In-hand Planar Manipulation
,”
IEEE Trans. Robot.
,
32
(
3
), pp.
763
770
.
16.
Spiers
,
A. J.
,
Calli
,
B.
, and
Dollar
,
A. M.
,
2018
, “
Variable-Friction Finger Surfaces to Enable Within-hand Manipulation Via Gripping and Sliding
,”
IEEE Robot. Auto. Lett.
,
3
(
4
), pp.
4116
4123
.
17.
Montana
,
D. J.
,
1988
, “
The Kinematics of Contact and Grasp
,”
Int. J. Robot. Res.
,
7
(
3
), pp.
17
32
.
18.
Paljug
,
E.
,
Yun
,
X.
, and
Kumar
,
V.
,
1994
, “
Control of Rolling Contacts in Multi-Arm Manipulation
,”
IEEE. Trans. Rob. Autom.
,
10
(
4
), pp.
441
452
.
19.
Han
,
L.
,
Guan
,
Y.-S.
,
Li
,
Z.
,
Shi
,
Q.
, and
Trinkle
,
J. C.
,
1997
, “
Dextrous Manipulation With Rolling Contacts
,”
Proceedings of International Conference on Robotics and Automation, Vol. 2
,
Albuquerque, NM
, IEEE, pp.
992
997
.
20.
Han
,
L.
, and
Trinkle
,
J. C.
,
1998
, “
Dextrous Manipulation by Rolling and Finger Gaiting
,”
Proceedings. 1998 IEEE International Conference on Robotics and Automation, Vol. 1
,
Leuven, Belgium
, IEEE, pp.
730
735
.
21.
Sankar
,
N.
,
Kumar
,
V.
, and
Yun
,
X.
,
1996
, “
Velocity and Acceleration Analysis of Contact Between Three-dimensional Rigid Bodies
,”
J. Appl. Mech.
,
63
(
4
), pp.
974
984
.
22.
Sarkar
,
N.
,
Yun
,
X.
, and
Kumar
,
V.
,
1997
, “
Dynamic Control of 3-d Rolling Contacts in Two-arm Manipulation
,”
IEEE. Trans. Rob. Autom.
,
13
(
3
), pp.
364
376
.
23.
Sarkar
,
N.
,
Yun
,
X.
, and
Kumar
,
V.
,
1997
, “
Control of Contact Interactions With Acatastatic Nonholonomic Constraints
,”
Int. J. Robot. Res.
,
16
(
3
), pp.
357
374
.
24.
Sarkar
,
N.
,
Yun
,
X.
, and
Kumar
,
V.
,
1994
, “
Control of Mechanical Systems With Rolling Constraints: Application to Dynamic Control of Mobile Robots
,”
Int. J. Robot. Res.
,
13
(
1
), pp.
55
69
.
25.
Cui
,
L.
, and
Dai
,
J. S.
,
2010
, “
A Darboux-Frame-based Formulation of Spin-Rolling Motion of Rigid Objects With Point Contact
,”
IEEE Trans. Robot.
,
26
(
2
), pp.
383
388
.
26.
Cui
,
L.
, and
Dai
,
J. S.
,
2015
, “
A Polynomial Formulation of Inverse Kinematics of Rolling Contact
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041003
.
27.
Chavan-Dafle
,
N.
, and
Rodriguez
,
A.
,
2018
, “
Stable Prehensile Pushing: In-hand Manipulation With Alternating Sticking Contacts
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
, IEEE, pp.
254
261
.
28.
Sundaralingam
,
B.
, and
Hermans
,
T.
,
2019
, “
Relaxed-Rigidity Constraints: Kinematic Trajectory Optimization and Collision Avoidance for In-grasp Manipulation
,”
Autonom. Robot.
,
43
(
2
), pp.
469
483
.
29.
Xu
,
J.
,
Koo
,
T.-K. J.
, and
Li
,
Z.
,
2010
, “
Sampling-Based Finger Gaits Planning for Multifingered Robotic Hand
,”
Autonom. Robot.
,
28
(
4
), pp.
385
402
.
30.
Shi
,
J.
,
Woodruff
,
J. Z.
,
Umbanhowar
,
P. B.
, and
Lynch
,
K. M.
,
2017
, “
Dynamic In-hand Sliding Manipulation
,”
IEEE Trans. Robot.
,
33
(
4
), pp.
778
795
.
31.
Lin
,
H.-C.
,
Smith
,
J.
,
Babarahmati
,
K. K.
,
Dehio
,
N.
, and
Mistry
,
M.
,
2018
, “
A Projected Inverse Dynamics Approach for Multi-arm Cartesian Impedance Control
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
, IEEE, pp.
5421
5428
.
32.
Balatti
,
P.
,
Kanoulas
,
D.
,
Rigano
,
G. F.
,
Muratore
,
L.
,
Tsagarakis
,
N. G.
, and
Ajoudani
,
A.
,
2018
, “
A Self-Tuning Impedance Controller for Autonomous Robotic Manipulation
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
, IEEE, pp.
5885
5891
.
33.
Dai
,
G.-B.
, and
Liu
,
Y.-C.
,
2016
, “
Distributed Coordination and Cooperation Control for Networked Mobile Manipulators
,”
IEEE. Trans. Ind. Electron.
,
64
(
6
), pp.
5065
5074
.
34.
Mason
,
M. T.
,
1986
, “
Mechanics and Planning of Manipulator Pushing Operations
,”
Int. J. Robot. Res.
,
5
(
3
), pp.
53
71
.
35.
Lynch
,
K. M.
, and
Mason
,
M. T.
,
1996
, “
Stable Pushing: Mechanics, Controllability, and Planning
,”
Int. J. Robot. Res.
,
15
(
6
), pp.
533
556
.
36.
Chavan-Dafle
,
N.
, and
Rodriguez
,
A.
,
2020
, “Sampling-based Planning of In-hand Manipulation With External Pushes,”
Robotics Research
,
N. M.
Amato
,
G.
Hager
,
S.
Thomas
, and
M.
Torres-Torriti
, eds.,
Springer
,
Berlin
, pp.
523
539
.
37.
Chavan-Dafle
,
N.
,
Holladay
,
R.
, and
Rodriguez
,
A.
,
2020
, “
Planar In-hand Manipulation Via Motion Cones
,”
Int. J. Robot. Res.
,
39
(
2–3
), pp.
163
182
.
38.
Zhou
,
J.
,
Hou
,
Y.
, and
Mason
,
M. T.
,
2019
, “
Pushing Revisited: Differential Flatness, Trajectory Planning, and Stabilization
,”
Int. J. Robot. Res.
,
38
(
12–13
), pp.
1477
1489
.
39.
Karayiannidis
,
Y.
,
Pauwels
,
K.
,
Smith
,
C.
, and
Kragic
,
D.
,
2015
, “
In-Hand Manipulation Using Gravity and Controlled Slip
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
, IEEE, pp.
5636
5641
.
40.
Hang
,
K.
,
Morgan
,
A. S.
, and
Dollar
,
A. M.
,
2019
, “
Pre-grasp Sliding Manipulation of Thin Objects Using Soft, Compliant, Or Underactuated Hands
,”
IEEE Robot. Automat. Lett.
,
4
(
2
), pp.
662
669
.
41.
Zheng
,
X.-Z.
,
Nakashima
,
R.
, and
Yoshikawa
,
T.
,
2000
, “
On Dynamic Control of Finger Sliding and Object Motion in Manipulation With Multifingered Hands
,”
IEEE. Trans. Rob. Autom.
,
16
(
5
), pp.
469
481
.
42.
Costanzo
,
M.
,
De Maria
,
G.
, and
Natale
,
C.
,
2018
, “
Slipping Control Algorithms for Object Manipulation With Sensorized Parallel Grippers
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
7455
7461
.
43.
Zhu
,
X.
, and
Wang
,
J.
,
2003
, “
Synthesis of Force-closure Grasps on 3-d Objects Based on the Q Distance
,”
IEEE. Trans. Rob. Autom.
,
19
(
4
), pp.
669
679
.
You do not currently have access to this content.